Patents by Inventor Kuo Feng

Kuo Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220384454
    Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20220373719
    Abstract: An optical device is provided. The optical device has a central region and a first-type region surrounding the central region. The first-type region includes a first sub-region and a second sub-region between the central region and the first sub-region. The optical device includes a substrate. The optical device also includes a meta-structure disposed on the substrate. The meta-structure includes first pillars in the first sub-region and second pillars in the second sub-region. In the cross-sectional view of the optical device along the radial direction of the optical device, two adjacent first pillars have a first pitch, two adjacent second pillars have a second pitch, and the second pitch is greater than the first pitch.
    Type: Application
    Filed: May 24, 2021
    Publication date: November 24, 2022
    Inventors: Kuo-Feng LIN, Yu-Ping TSENG, Chin-Chuan HSIEH
  • Patent number: 11501077
    Abstract: A semantic processing method includes the following steps of: segmenting an input sentence into a plurality of lexicons according to a lexicon database, wherein the lexicon table includes a plurality of table blocks, and the table blocks are respectively located at a plurality of levels of the lexicon table; referring one part of speech or a plurality of parts of speech, corresponding to one of the lexicons of the table blocks, in the lexicon database; performing at least one grammar rule for each of the table blocks of the levels according to the part of speech, the plurality of parts of speech, the part of speech sequence or the plurality of part of speech sequences corresponding to the table blocks of the lexicon table; and outputting a parse tree according to the table blocks in the lexicon table that conform to the at least one grammar rule.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: November 15, 2022
    Assignee: ASUSTEK COMPUTER INC.
    Inventors: Tai-Ming Parng, Kuo-Feng Luo
  • Publication number: 20220359296
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Publication number: 20220352030
    Abstract: In a method of manufacturing a semiconductor device, a fin structure is formed by patterning a semiconductor layer, and an annealing operation is performed on the fin structure. In the patterning of the semiconductor layer, a damaged area is formed on a sidewall of the fin structure, and the annealing operation eliminates the damaged area.
    Type: Application
    Filed: July 14, 2022
    Publication date: November 3, 2022
    Inventors: Chun Hsiung TSAI, Yu-Ming LIN, Kuo-Feng YU, Ming-Hsi YEH, Shahaji B. MORE, Chandrashekhar Prakash SAVANT, Chih-Hsin KO, Clement Hsingjen WANN
  • Publication number: 20220351975
    Abstract: In an embodiment, a structure includes: a semiconductor substrate; a gate spacer over the semiconductor substrate, the gate spacer having an upper portion and a lower portion, a first width of the upper portion decreasing continually in a first direction extending away from a top surface of the semiconductor substrate, a second width of the lower portion being constant along the first direction; a gate stack extending along a first sidewall of the gate spacer and the top surface of the semiconductor substrate; and an epitaxial source/drain region adjacent a second sidewall of the gate spacer.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Yu-Jiun Peng, Hsiu-Hao Tsao, Shu-Han Chen, Chang-Jhih Syu, Kuo-Feng Yu, Jian-Hao Chen, Chih-Hao Yu, Chang-Yun Chang
  • Patent number: 11488820
    Abstract: A method of fabricating layered structure is disclosed. A basal layer is formed. A laminate is formed on the basal layer, and the laminate includes a device layer, a sacrificial layer and a protection layer stacked in sequence. The device layer, the sacrificial layer and the protection layer are etched to obtain a patterned laminate. A first dielectric layer covering a lateral surface of the patterned laminate is formed. Part of the first dielectric layer and part of the protection layer are removed by polishing. The protection layer of the patterned laminate is etched to expose the sacrificial layer. A through hole in the first dielectric layer is formed to expose the basal layer. The sacrificial layer of the patterned laminate is etched to form an opening in the first dielectric layer, and the opening exposes a top surface of the device layer.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 1, 2022
    Assignee: JIANGSU ADVANCED MEMORY TECHNOLOGY CO., LTD.
    Inventors: Chung Hon Lam, Hao Ren Zhuang, Kuo-Feng Lo, Yen Yu Hsu
  • Publication number: 20220336629
    Abstract: The present disclosure relates to a semiconductor device including a substrate having a top surface and a gate stack. The gate stack includes a gate dielectric layer on the substrate and a gate electrode on the gate dielectric layer. The semiconductor device also includes a multi-spacer structure. The multi-spacer includes a first spacer formed on a sidewall of the gate stack, a second spacer, and a third spacer. The second spacer includes a first portion formed on a sidewall of the first spacer and a second portion formed on the top surface of the substrate. The second portion of the second spacer has a thickness in a first direction that gradually decreases. The third spacer is formed on the second portion of the second spacer and on the top surface of the substrate. The semiconductor device further includes a source/drain region formed in the substrate, and a portion of the third spacer abuts the source/drain region and the second portion of the second spacer.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Hsiung TSAI, Clement Hsingjen Wann, Kuo-Feng Yu, Ming-Hsi Yeh, Shahaji B. More, Yu-Ming Lin
  • Publication number: 20220336609
    Abstract: A semiconductor device includes a stack of semiconductor layers vertically arranged above a semiconductor base structure, a gate dielectric layer having portions each surrounding one of the semiconductor layers, and a gate electrode surrounding the gate dielectric layer. Each portion of the gate dielectric layer has a top section above the respective semiconductor layer and a bottom section below the semiconductor layer. The top section has a top thickness along a vertical direction perpendicular to a top surface of the semiconductor base structure; and the bottom section has a bottom thickness along the vertical direction. The top thickness is greater than the bottom thickness.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Yung-Hsiang Chan, Wen-Hung Huang, Shan-Mei Liao, Kuei-Lun Lin, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20220328650
    Abstract: A semiconductor device includes an interface layer on a substrate, a gate dielectric layer on the interface layer, and a work function metal layer on the gate dielectric layer. An interface between the interface layer and the gate dielectric layer has a concentration of a dipole-inducing element. The semiconductor device also includes an oxygen blocking layer on the work function metal layer and a metal fill layer on the oxygen blocking layer.
    Type: Application
    Filed: November 22, 2021
    Publication date: October 13, 2022
    Inventors: An-Hung Tai, Yung-Hsiang Chan, Shan-Mei Liao, Hsin-Han Tsai, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20220320293
    Abstract: A method includes receiving a workpiece having a first stack of semiconductor layers in a first region and a second stack of semiconductor layers in a second region; forming a first gate dielectric layer surrounding each layer of the first stack and a second gate dielectric layer surrounding each layer of the second stack; forming a first dipole layer surrounding the first gate dielectric layer and merging between vertically adjacent portions of the first gate dielectric layer, and a second dipole layer surrounding the second gate dielectric layer and merging between vertically adjacent portions of the second gate dielectric layer; removing the first dipole layer; after the removing of the first dipole layer, conducting a first annealing on the workpiece; removing a remaining portion of the second dipole layer; and forming a gate electrode layer in the first region and the second region.
    Type: Application
    Filed: September 22, 2021
    Publication date: October 6, 2022
    Inventors: Shan-Mei Liao, Yung-Hsiang Chan, Yao-Teng Chuang, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20220320337
    Abstract: A transistor is provided. The transistor includes a first source/drain epitaxial feature, a second source/drain epitaxial feature, and two or more semiconductor layers disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature. The two or more semiconductor layers comprise different materials. The transistor further includes a gate electrode layer surrounding at least a portion of the two or more semiconductor layers, wherein the transistor has two or more threshold voltages.
    Type: Application
    Filed: August 24, 2021
    Publication date: October 6, 2022
    Inventors: Chia-Wei CHEN, Chi-Sheng LAI, Shih-Hao LIN, Jian-Hao CHEN, Kuo-Feng YU
  • Publication number: 20220320319
    Abstract: A semiconductor structure, a method for manufacturing a FinFET structure and a method for manufacturing a semiconductor structure are provided. The method for forming a FinFET structure includes: providing a FinFET precursor including a plurality of fins and a plurality of gate trenches between the fins; forming a first portion of the trench dummy of a dummy gate within the plurality of gate trenches; removing at least a part of the first portion of the trench dummy; forming a second portion of the trench dummy over the first portion of the trench dummy; performing a first thermal treatment to the first and second portions of the trench dummy; and forming a blanket dummy of the dummy gate over the second portion of the trench dummy. The present disclosure further provides a FinFET structure with an improved metal gate.
    Type: Application
    Filed: August 10, 2021
    Publication date: October 6, 2022
    Inventors: MING-TE CHEN, HUI-TING TSAI, JUN HE, KUO-FENG YU, CHUN HSIUNG TSAI
  • Publication number: 20220291306
    Abstract: Disclosed methods include placing a semiconductor wafer containing MRAM devices into a first magnetic field that has a magnitude sufficient to magnetically polarize MRAM bits and has a substantially uniform field strength and direction over the entire area of the wafer. The method further includes placing the wafer in a second magnetic field having an opposite field direction, a substantially uniform field strength and direction over the entire area of the wafer, and magnitude less than a design threshold for MRAM bit magnetization reversal. The method further includes determining a presence of malfunctioning MRAM bits by determining that such malfunctioning MRAM bits have a magnetic polarization that was reversed due to exposure to the second magnetic field. Malfunctioning MRAM bits may further be characterized by electrically reading data bits, or by using a chip probe to read one or more of voltage, current, resistances, etc., of the MRAM devices.
    Type: Application
    Filed: September 9, 2021
    Publication date: September 15, 2022
    Inventors: Cheng-Wei Chien, Harry-Hak-Lay Chuang, Kuei-Hung Shen, Kuo-Feng Huang, Bo-Hung Lin, Chun-Chi Chen
  • Publication number: 20220285514
    Abstract: A semiconductor device includes a plurality of active region structures that each protrude upwards in a vertical direction. The active region structures each extend in a first horizontal direction. The active region structures are separated from one another in a second horizontal direction different from the first horizontal direction. A gate structure is disposed over the active region structures. The gate structure extends in the second horizontal direction. The gate structure partially wraps around each of the active region structures. A conductive capping layer is disposed over the gate structure. A gate via is disposed over the conductive capping layer. A dimension of the conductive capping layer measured in the second horizontal direction is substantially greater than a maximum dimension of the gate via measured in the second horizontal direction.
    Type: Application
    Filed: September 3, 2021
    Publication date: September 8, 2022
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Kuan-Ting Liu, Yen-Ju Chen, Chun-Chih Cheng, Wei-Chen Hsiao
  • Publication number: 20220285161
    Abstract: A method includes forming a first gate dielectric and a second gate dielectric over a first semiconductor region and a second semiconductor region, respectively, depositing a lanthanum-containing layer including a first portion and a second portion overlapping the first gate dielectric and the second gate dielectric, respectively, and depositing a hard mask including a first portion and a second portion overlapping the first portion and the second portion of the lanthanum-containing layer, respectively. The hard mask is free from both of titanium and tantalum. The method further includes forming a patterned etching mask to cover the first portion of the hard mask, with the second portion of the hard mask being exposed, removing the second portion of the hard mask and the second portion of the lanthanum-containing layer, and performing an anneal to drive lanthanum in the first portion of the lanthanum-containing layer into the first gate dielectric.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 8, 2022
    Inventors: Kuo-Feng Yu, Chun Hsiung Tsai, Jian-Hao Chen, Hoong Shing Wong, Chih-Yu Hsu
  • Patent number: 11437280
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Patent number: 11437493
    Abstract: The present disclosure relates to a semiconductor device including a substrate having a top surface and a gate stack. The gate stack includes a gate dielectric layer on the substrate and a gate electrode on the gate dielectric layer. The semiconductor device also includes a multi-spacer structure. The multi-spacer includes a first spacer formed on a sidewall of the gate stack, a second spacer, and a third spacer. The second spacer includes a first portion formed on a sidewall of the first spacer and a second portion formed on the top surface of the substrate. The second portion of the second spacer has a thickness in a first direction that gradually decreases. The third spacer is formed on the second portion of the second spacer and on the top surface of the substrate. The semiconductor device further includes a source/drain region formed in the substrate, and a portion of the third spacer abuts the source/drain region and the second portion of the second spacer.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: September 6, 2022
    Inventors: Chun Hsiung Tsai, Clement Hsingjen Wann, Kuo-Feng Yu, Ming-Hsi Yeh, Shahaji B. More, Yu-Ming Lin
  • Publication number: 20220278219
    Abstract: A method of manufacturing a diode structure includes forming a first stack on a silicon layer on a substrate. A first sidewall spacer extending along and covering a sidewall of the first stack is formed. The silicon layer is selectively etched to a first predetermined depth, thereby forming a second stack. The remaining silicon layer includes a silicon base. A second sidewall spacer extending along and covering a sidewall of the second stack is formed. The silicon base is selectively etched to form a third stack on the substrate. With the second sidewall spacer as a mask, lateral plasma ion implantation is performed. Defects at the interface between two adjacent semiconductor layers can be reduced by the method.
    Type: Application
    Filed: May 11, 2022
    Publication date: September 1, 2022
    Inventors: Chieh-Fang CHEN, Kuo-Feng LO, Chung-Hon LAM, Yu ZHU
  • Publication number: 20220278218
    Abstract: The present disclosure provides a semiconductor device and a method of forming the same. The semiconductor device includes a first channel members being vertically stacked, a second channel members being vertically stacked, an n-type work function layer wrapping around each of the first channel members, a first p-type work function layer over the n-type work function layer and wrapping around each of the first channel members, a second p-type work function layer wrapping around each of the second channel members, a third p-type work function layer over the second p-type work function layer and wrapping around each of the second channel members, and a gate cap layer over a top surface of the first p-type work function layer and a top surface of the third p-type work function layer such that the gate cap layer electrically couples the first p-type work function layer and the third p-type work function layer.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen