Patents by Inventor Kuo-Tai Huang

Kuo-Tai Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6087262
    Abstract: A method for manufacturing shallow trench isolation structure includes the steps of fabricating a self-aligned silicon nitride mask over the trench region so that a kink effect due to the misalignment of mask during a conventional mask-making process can be avoided. Moreover, the silicon nitride mask requires fewer steps and less complicated operations to construct than a conventional reverse tone mask.
    Type: Grant
    Filed: November 9, 1998
    Date of Patent: July 11, 2000
    Assignee: United Microelectronics Corp.
    Inventors: Gwo-Shii Yang, Kuo-Tai Huang, Tri-Rung Yew, Water Lur
  • Patent number: 6083789
    Abstract: A method for forming a DRAM capacitor whose titanium nitride electrode is fabricated in a sequence of steps that results in a good step-coverage. Moreover, contamination of the titanium nitride layer and cross-diffusion between the titanium nitride layer and the dielectric film layer is reduced to a minimum. The method of forming the titanium nitride layer includes the steps of depositing a first titanium nitride layer over a dielectric film layer using a conventional physical vapor deposition process. Then, a second titanium nitride layer is deposited over the first titanium nitride layer using a collimated physical vapor deposition process.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: July 4, 2000
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Wen-Yi Hsieh, Tri-Rung Yew
  • Patent number: 6078492
    Abstract: A structure of a capacitor includes two gates and a commonly used source/drain region on a substrate. Then, a pitted self align contact window (PSACW) partly exposes the commonly used source/drain region. Then an glue/barrier layer and a lower electrode of the capacitor are over the PSACW. Then a dielectric thin film with a material having high dielectric constant is over the lower electrode. Then, an upper electrode is over the dielectric thin film to complete a capacitor, which has a structure of metal insulator metal with a shape like the PSACW.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: June 20, 2000
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Wen-Yi Hsieh, Tri-Rung Yew
  • Patent number: 6057189
    Abstract: A method of fabricating a capacitor, comprising the steps of: providing a conductive layer over a semiconductor substrate having a transistor formed thereon to connect a source/drain region of the transistor; forming a hemispherical grained silicon layer over the conductive layer; using an implantation method to implant ions into the hemispherical grained silicon layer; performing a thermal treatment process to convert the ions into a barrier layer over the hemispherical grained silicon layer; performing a wet etching process to clean a surface of the barrier layer; forming a dielectric layer over the barrier layer and forming a top electrode over the dielectric layer.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: May 2, 2000
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Wen-Yi Hsieh, Wen-Kuan Yeh, Tri-Rung Yew
  • Patent number: 6037206
    Abstract: A method for fabricating a capacitor of a DRAM includes a lower conductive layer of the capacitor is formed over a substrate and is electrically coupled to an interchangeable source/drain region through a contact window penetrating an insulating layer. Then performing etching process on the lower conductive layer so as to form a fence-like plate with a higher height than a thickness of the lower conductive layer and adhere to the lower conductive layer. Next a media conductive layer is formed over the lower conductive layer and the fence-like plate. Then the technology of etching back is utilized to round the sharp area on the tip of the fence-like plate. The lower conductive layer and the media conductive layer are electrically coupled together as a lower electrode. Then, a dielectric thin film is formed over the media conductive layer and an upper electrode is formed over the dielectric thin film. Therefore, a MIM capacitor according to the preferred embodiment of the invention is formed.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: March 14, 2000
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Hsi-Ta Chuang, Tri-Rung Yew
  • Patent number: 5994183
    Abstract: A method for forming a high capacitance charge storage structure that can be applied to a substrate wafer having MOS transistor already formed thereon. The method is to form an insulating layer above the substrate wafer. Next, a contact window exposing a source/drain region is formed in the insulating layer. Then, a tungsten suicide layer, which functions as a lower electrode for the charge storage structure, is formed over the substrate. Thereafter, a tungsten nitride layer is formed over the tungsten silicide layer, and then a dielectric layer is formed over the tungsten nitride layer. The dielectric layer is preferably a tantalum oxide layer. Finally, a titanium nitride layer, which functions as an upper electrode for the charge storage structure, is formed over the tantalum oxide layer.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: November 30, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Wen-Yi Hsieh, Tri-Rung Yew
  • Patent number: 5976951
    Abstract: A method for forming an isolating trench in a substrate is disclosed herein. The forgoing method includes the following steps. First, form a first dielectric layer and a second dielectric layer on the substrate subsequently, and then develop a photoresist pattern on the second dielectric layer. Then, etch the substrate, the first dielectric layer and the second dielectric layer to form a trench in the substrate. Next, form a first silicon dioxide layer in the trench followed by removing the photoresist pattern. The next step is to form a third dielectric layer on the second dielectric layer and the first silicon dioxide layer. Subsequently, fill the trench with silicon dioxide to from an oxide trench; then remove the second dielectric layer, a first portion of the third dielectric layer and a portion of the oxide trench with a chemical mechanical polishing (CMP) and a first solution.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: November 2, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Chih-Hsiang Hsiao, Chao-Yen Chen
  • Patent number: 5956598
    Abstract: A semiconductor fabrication method is provided for fabricating a shallow-trench isolation (STI) structure with a rounded corner in integrated circuits through a rapid thermal process (RTP). In the fabrication of the STI structure, a sharp corner is often undesirably formed. This sharp corner , if not eliminated, causes the occurrence of a leakage current when the resultant IC device is in operation that significantly degrades the performance of the resultant IC device. To eliminate this sharp corner , an RTP is performed at a temperature of above 1,100.degree. C., which temperature is higher than the glass transition temperature of the substrate, for about 1 to 2 minutes. The result is that the surface of the substrate is oxidized into an sacrificial oxide layer and the sharp corner is deformed into a rounded shape with a larger convex radius of curvature. This allows the problems arising from the existence of the sharp corner to be substantially eliminated.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: September 21, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Gwo-Shii Yang, Tri-Rung Yew, Water Lur
  • Patent number: 5895254
    Abstract: A method for forming a shallow trench isolation structure comprising the steps of sequentially forming a pad oxide layer and a mask layer over a substrate, then patterning the mask layer and the pad oxide layer. Next, an opening is formed in the mask layer, wherein the sidewall of the opening in the mask layer forms a sharp angle with the substrate layer below. Thereafter, the substrate is etched from the opening down to form a trench. In a subsequent step, insulating material is deposited into the trench forming an insulating layer rising to a level higher than the mask layer, and accompanying by the formation of a protuberance at the side of the insulating layer. Subsequently, the mask layer is removed, and then portions of the pad oxide layer is removed to form a spacer on the upper side of the insulating layer. Finally, the pad oxide layer above the substrate is removed to complete the formation of the shallow trench isolation structure.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: April 20, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Tai Huang, Tony Lin, Water Lur
  • Patent number: D371289
    Type: Grant
    Filed: May 4, 1995
    Date of Patent: July 2, 1996
    Inventor: Kuo-Tai Huang