Patents by Inventor Kuo-Tai Huang

Kuo-Tai Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8836038
    Abstract: A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yong-Tian Hou, Peng-Fu Hsu, Jin Ying, Kang-Cheng Lin, Kuo-Tai Huang, Tze-Liang Lee
  • Publication number: 20140242776
    Abstract: A method of forming an isolation trench having localized stressors is provided. In accordance with embodiments of the present invention, a trench is formed in a substrate and partially filled with a dielectric material. In an embodiment, the trench is filled with a dielectric layer and a planarization step is performed to planarize the surface with the surface of the substrate. The dielectric material is then recessed below the surface of the substrate. In the recessed portion of the trench, the dielectric material may remain along the sidewalls or the dielectric material may be removed along the sidewalls. A stress film, either tensile or compressive, may then be formed over the dielectric material within the recessed portion. The stress film may also extend over a transistor or other semiconductor structure.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 28, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mong-Song Liang, Tze-Liang Lee, Kuo-Tai Huang, Chao-Cheng Chen, Hao-Ming Lien, Chih-Tang Peng
  • Patent number: 8736016
    Abstract: An isolation trench having localized stressors is provided. In accordance with embodiments of the present invention, a trench is formed in a substrate and partially filled with a dielectric material. In an embodiment, the trench is filled with a dielectric layer and a planarization step is performed to planarize the surface with the surface of the substrate. The dielectric material is then recessed below the surface of the substrate. In the recessed portion of the trench, the dielectric material may remain along the sidewalls or the dielectric material may be removed along the sidewalls. A stress film, either tensile or compressive, may then be formed over the dielectric material within the recessed portion. The stress film may also extend over a transistor or other semiconductor structure.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mong-Song Liang, Tze-Liang Lee, Kuo-Tai Huang, Chao-Cheng Chen, Hao-Ming Lien, Chih-Tang Peng
  • Publication number: 20140001566
    Abstract: The present disclosure describes a semiconductor device. The device includes a semiconductor substrate, an isolation structure formed in the substrate for isolating a first active region and a second active region, a first transistor formed in the first active region, the first transistor having a high-k gate dielectric layer and a metal gate with a first work function formed over the high-k gate dielectric layer, and a second transistor formed in the second active region, the second transistor having the high-k gate dielectric layer and a metal gate with a second work function formed over the high-k gate dielectric layer. The metal gates are formed from at least a single metal layer having the first work function and the second work function.
    Type: Application
    Filed: August 29, 2013
    Publication date: January 2, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yih-Ann Lin, Ryan Chia-Jen Chen, Yuan-Shun Chao, Yi-Shien Mor, Kuo-Tai Huang
  • Patent number: 8551837
    Abstract: Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yih-Ann Lin, Ryan Chia-Jen Chen, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen, Jr Jung Lin, Yu Chao Lin
  • Patent number: 8536660
    Abstract: A semiconductor structure includes a first MOS device including a first gate, and a second MOS device including a second gate. The first gate includes a first high-k dielectric over a semiconductor substrate; a second high-k dielectric over the first high-k dielectric; a first metal layer over the second high-k dielectric, wherein the first metal layer dominates a work-function of the first MOS device; and a second metal layer over the first metal layer. The second gate includes a third high-k dielectric over the semiconductor substrate, wherein the first and the third high-k dielectrics are formed of same materials, and have substantially a same thickness; a third metal layer over the third high-k dielectric, wherein the third metal layer and the second metal layer are formed of same materials, and have substantially a same thickness; and a fourth metal layer over the third metal layer.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: September 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Fu Hsu, Yong-Tian Hou, Ssu-Yi Li, Kuo-Tai Huang, Mong Song Liang
  • Patent number: 8524588
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a gate dielectric over a semiconductor substrate, forming a capping layer over or under the gate dielectric, forming a metal layer over the capping layer, the metal layer having a first work function, treating a portion of the metal layer such that a work function of the portion of the metal layer changes from the first work function to a second work function, and forming a first metal gate from the untreated portion of the metal layer having the first work function and forming a second metal gate from the treated portion of the metal layer having the second work function.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: September 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yih-Ann Lin, Ryan Chia-Jen Chen, Donald Y. Chao, Yi-Shien Mor, Kuo-Tai Huang
  • Patent number: 8450161
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 28, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Hao-Ming Lien, Ssu-Yu Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Liang Chen, Chung-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang
  • Patent number: 8383502
    Abstract: A method of fabricating a semiconductor device includes providing a semiconductor substrate having a first active region and a second active region, forming a first metal layer over a high-k dielectric layer, removing at least a portion of the first metal layer in the second active region, forming a second metal layer on first metal layer in the first active region and over the high-k dielectric layer in the second active region, and thereafter, forming a silicon layer over the second metal layer. The method further includes removing the silicon layer from the first gate stack thereby forming a first trench and from the second gate stack thereby forming a second trench, and forming a third metal layer over the second metal layer in the first trench and over the second metal layer in the second trench.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: February 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Jr Jung Lin, Yi-Shien Mor, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen
  • Patent number: 8324090
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first capping layer and a second capping layer over the high-k dielectric layer, the first capping layer overlying the first region and the second capping layer overlying the second region, forming a layer containing silicon (Si) over the first and second capping layers, forming a metal layer over the layer containing Si, and forming a first gate stack over the first region and a second gate stack over the second active region.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuri Masuoka, Peng-Fu Hsu, Huan-Tsung Huang, Kuo-Tai Huang, Yong-Tian Hou, Carlos H. Diaz
  • Publication number: 20120225529
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Application
    Filed: May 7, 2012
    Publication date: September 6, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chieh-Hao Chen, Hao-Ming Lien, Ssu-Yu Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Liang Chen, Chung-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang
  • Publication number: 20120164822
    Abstract: Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 28, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yih-Ann Lin, Ryan Chia-Jen Chen, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen, Jr Jung Lin
  • Patent number: 8193586
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 5, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Hao-Ming Lien, Ssu-Yi Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang, Chien-Liang Chen
  • Patent number: 8159035
    Abstract: A semiconductor structure includes a refractory metal silicide layer; a silicon-rich refractory metal silicide layer on the refractory metal silicide layer; and a metal-rich refractory metal silicide layer on the silicon-rich refractory metal silicide layer. The refractory metal silicide layer, the silicon-rich refractory metal silicide layer and the metal-rich refractory metal silicide layer include same refractory metals. The semiconductor structure forms a portion of a gate electrode of a metal-oxide-semiconductor device.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: April 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Donald Y. Chao, Albert Chin, Ping-Fang Hung, Fong-Yu Yen, Kang-Cheng Lin, Kuo-Tai Huang
  • Publication number: 20120086085
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Peng-Fu Hsu, Kang-Cheng Lin, Kuo-Tai Huang
  • Patent number: 8148249
    Abstract: Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: April 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yih-Ann Lin, Ryan Chia-Jen Chen, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen, Jr Jung Lin, Yu-Chao Lin
  • Patent number: 8105931
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: January 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Fu Hsu, Kang-Cheng Lin, Kuo-Tai Huang
  • Publication number: 20110275212
    Abstract: A method of fabricating a semiconductor device includes providing a semiconductor substrate having a first active region and a second active region, forming a first metal layer over a high-k dielectric layer, removing at least a portion of the first metal layer in the second active region, forming a second metal layer on first metal layer in the first active region and over the high-k dielectric layer in the second active region, and thereafter, forming a silicon layer over the second metal layer. The method further includes removing the silicon layer from the first gate stack thereby forming a first trench and from the second gate stack thereby forming a second trench, and forming a third metal layer over the second metal layer in the first trench and over the second metal layer in the second trench.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Jr Jung Lin, Yi-Shien Mor, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen
  • Patent number: 8003507
    Abstract: The present disclosure provides a method of fabricating a semiconductor device.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: August 23, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Jr Jung Lin, Yi-Shien Mor, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen
  • Patent number: 7989321
    Abstract: A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and/or restricted from growth.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Yong-Tian Hou, Peng-Fu Hsu, Kuo-Tai Huang, Donald Y. Chao, Cheng-Lung Hung