Patents by Inventor L. Olson

L. Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11678481
    Abstract: Methods of improving adhesion between a photoresist and conductive or insulating structures. The method comprises forming a slot through at least a portion of alternating conductive structures and insulating structures on a substrate. Portions of the conductive structures or of the insulating structures are removed to form recesses in the conductive structures or in the insulating structures. A photoresist is formed over the alternating conductive structures and insulating structures and within the slot. Methods of improving adhesion between a photoresist and a spin-on dielectric material are also disclosed, as well as methods of forming a staircase structure.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: June 13, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Rohit Kothari, Jason C. McFarland, Jason Reece, David A. Kewley, Adam L. Olson
  • Patent number: 11673036
    Abstract: An exercise storage system includes a storage compartment including at least one storage element. Exercise equipment is stored on the storage elements. A door is connected to the storage compartment with a hinge such that the viewing angle of the door is adjustable. A display on the door includes a backlit display and a mirrored display. A user may select exercise equipment from the storage compartment and perform an exercise activity while viewing the display.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: June 13, 2023
    Assignee: iFIT Inc.
    Inventors: William T. Dalebout, Michael L. Olson
  • Patent number: 11672700
    Abstract: The present disclosure provides an adjustable endoscopic surgical device for illuminating a tissue surface with diffuse and oblique light. In some embodiments, light emanates from the sides of an optical fiber, which is optionally formed at least in part into a loop shape.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: June 13, 2023
    Assignee: The Regents of the University of Colorado
    Inventor: Jeffrey L. Olson
  • Patent number: 11668064
    Abstract: A coupler for a helical pile system is described. The coupler includes at least two sections of square tube. A first section is nested within and affixed to the second section. The first section may further include an inner width by which the first section is configured to receive two pieces of rectangular bar stocks of a helical pile system. The at least two sections each include at least two pairs of aligned through holes, for receiving first and second bolts. By the first bolt and second bolts, the two pieces of rectangular bar stock may be coupled. The first section may thus transfer torsion between the two pieces of rectangular bar stock, such as when screwing the helical pile system into the earth.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: June 6, 2023
    Assignee: SUPPORTWORKS, INC.
    Inventors: John E. Waltz, Kyle L. Olson
  • Patent number: 11664321
    Abstract: A multi-step conductive interconnect (MSI) may comprise a first step of the MSI comprising a first end and a second end opposite the first end, a first height (Ha) and a first diameter (Da). A second step of the MSI may comprise a first end and a second end opposite the first end. The first end of the second step contacts the second end of the first step. The second step may comprise a second height (Hb) and a second diameter (Db). The MSI may comprise a height (H) and a height to width aspect ratio (H:Da) greater than or equal to 1.5:1. A sidewall of the first step may comprise an offset (O) with respect to a sidewall of the second step to form a disjointed sidewall profile. The offset O may be in a range of 0.1 ?m-20 ?m.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: May 30, 2023
    Assignee: Deca Technologies USA, Inc.
    Inventors: Clifford Sandstrom, Craig Bishop, Timothy L. Olson
  • Publication number: 20230142384
    Abstract: A semiconductor device may comprise a bridge die comprising copper studs. Copper posts may be disposed in a periphery of the bridge die. An encapsulant may be disposed on five sides of the bridge die, on sides of the copper studs, and on sides of the copper posts that leave ends of the copper studs and opposing first and second ends of the copper posts exposed from the encapsulant. A frontside build-up interconnect structure may be formed over the copper studs of the bridge die and coupled to second ends of the copper posts opposite the first ends of the copper posts. The frontside build-up interconnect structure comprising first pads at a first pitch within a footprint of the bridge die and second pads at a second pitch outside a footprint of the bridge die. The first pitch may be at least 1.5 times less than the second pitch.
    Type: Application
    Filed: December 20, 2022
    Publication date: May 11, 2023
    Inventors: Timothy L. Olson, Craig Bishop, Clifford Sandstrom
  • Publication number: 20230116129
    Abstract: A self-assembled nanostructure comprises first domains and second domains. The first domains comprise a first block of a block copolymer material and an activatable catalyst. The second domains comprise a second block and substantially without the activatable catalyst. The activatable catalyst is capable of generating catalyst upon application of activation energy, and the generated catalyst is capable of reacting with a metal oxide precursor to provide a metal oxide. A semiconductor structure comprises such self-assembled nanostructure on a substrate.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 13, 2023
    Inventors: Nicholas Hendricks, Adam L. Olson, William R. Brown, Ho Seop Eom, Xue Chen, Kaveri Jain, Scott Schuldenfrei
  • Patent number: 11616003
    Abstract: A semiconductor device may include an embedded device comprising through silicon vias (TSVs) extending from a first surface to a second surface opposite the first surface, wherein the embedded device comprises an active device, a semiconductor die comprising an active surface formed at the first surface, an integrated passive device (IPD), or a passive device. Encapsulant may be disposed over at least five sides of the embedded device. A first electrical interconnect structure may be coupled to a first end of the TSV at the first surface of the embedded device, and a second electrical interconnect structure may be coupled to a second end of the TSV at the second surface of the embedded device. A semiconductor die (e.g. a system on chip (SoC), memory device, microprocessor, graphics processor, or analog device), may be mounted over the first electrical interconnect of the TSV.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: March 28, 2023
    Assignee: Deca Technologies USA, Inc.
    Inventors: Timothy L. Olson, Clifford Sandstrom, Craig Bishop, Robin Davis
  • Publication number: 20230085067
    Abstract: The disclosure concerns methods of forming a semiconductor device with a repairable redistribution layer (RDL) design, comprising: preparing an original repairable RDL design; forming first conductive segments of the repairable RDL design; inspecting the first conductive segments of the repairable RDL design to detect manufacturing defects; detecting at least one defect in the first conductive segments; and forming second conductive segments of the repairable RDL design according to a new custom RDL design to mitigate the negative effects of the at least one defect among the first conductive segments. The disclosure also concerns semiconductor devices with a repairable RDL design.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 16, 2023
    Inventors: Craig Bishop, David Ryan Bartling, Timothy L. Olson
  • Publication number: 20230063178
    Abstract: A microelectronic device includes a stack structure including a vertically alternating sequence of conductive structures and insulating structures arranged in tiers, a dielectric-filled opening vertically extending into the stack structure and defined between two internal sidewalls of the stack structure, a stadium structure within the stack structure and comprising steps defined by horizontal ends of at least some of the tiers, a first ledge extending upward from a first uppermost step of the steps of the stadium structure and interfacing with a first internal sidewall of the two internal sidewalls of the stack structure, and a second ledge extending upward from a second, opposite uppermost step of the steps of the stadium structure and interfacing with a second, opposite internal sidewall of the two internal sidewalls.
    Type: Application
    Filed: December 29, 2021
    Publication date: March 2, 2023
    Inventors: Bo Zhao, Matthew J. King, Jason Reece, Michael J. Gossman, Shruthi Kumara Vadivel, Martin J. Barclay, Lifang Xu, Joel D. Peterson, Matthew Park, Adam L. Olson, David A. Kewley, Xiaosong Zhang, Justin B. Dorhout, Zhen Feng Yow, Kah Sing Chooi, Tien Minh Quan Tran, Biow Hiem Ong
  • Publication number: 20230047504
    Abstract: A method of forming a semiconductor device can comprise providing a first shift region in which to determine a first displacement. A second shift region may be provided in which to determine a second displacement. A unique electrically conductive structure may be formed comprising traces to account for the first displacement and the second displacement. The electrically conductive structure may comprise traces comprising a first portion within the first shift region and a second portion of traces in the second shift region laterally offset from the first portion of traces. A third portion of the traces may be provided in the routing area between the first shift region and the second shift region. A unique variable metal fill may be formed within the fill area. The variable metal fill may be electrically isolated from the unique electrically conductive structure.
    Type: Application
    Filed: August 10, 2022
    Publication date: February 16, 2023
    Inventors: David Ryan Bartling, Craig Bishop, Timothy L. Olson
  • Publication number: 20230038242
    Abstract: A method may comprise: receiving, via a controller and through a camera, visual data corresponding to a row of latch assemblies in a cargo handling system; and determining, via the controller, whether each latch assembly in the row of latch assemblies is in a properly securing state.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 9, 2023
    Applicant: GOODRICH CORPORATION
    Inventors: Scott Harms, Aaron J. Roberts, Mark L. Olson
  • Publication number: 20230033803
    Abstract: An electronic device comprising multilevel bitlines comprising first bitlines and second bitlines. The first bitlines and the second bitlines are positioned at different levels. Pillar contacts are electrically connected to the first bitlines and to the second bitlines. Level 1 contacts are electrically connected to the first bitlines and level 2 contacts are electrically connected to the second bitlines. A liner is between the first bitlines and the level 2 contacts. Each bitline of the first bitlines is electrically connected to a single pillar contact in a subblock adjacent to the level 1 contacts and each bitline of the second bitlines is electrically connected to a single pillar contact adjacent to the level 2 contacts. Methods of forming an electronic device and related systems are also disclosed.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 2, 2023
    Inventors: Yoshiaki Fukuzumi, Harsh Narendrakumar Jain, Naveen Kaushik, Adam L. Olson, Richard J. Hill, Lars P. Heineck
  • Publication number: 20230032177
    Abstract: An electronic device comprising multilevel bitlines, pillar contacts, level 1 contacts, and level 2 contacts. The multilevel bitlines comprise first bitlines and second bitlines, with the first bitlines and second bitlines positioned at different levels. The pillar contacts are electrically connected to the first bitlines and to the second bitlines, the level 1 contacts are electrically connected to the first bitlines, and the level 2 contacts are electrically connected to the second bitlines. Each bitline of the first bitlines is electrically connected to a single pillar contact adjacent to the level 1 contacts and each bitline of the second bitlines is electrically connected to a single pillar contact adjacent to the level 2 contacts. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 2, 2023
    Inventors: Harsh Narendrakumar Jain, Adam L. Olson, Yoshiaki Fukuzumi, Naveen Kaushik, Richard J. Hill, Lars P. Heineck
  • Publication number: 20230024518
    Abstract: Systems and methods are disclosed for communicating via a communications network with a load control system of a respective user environment, receiving information on the load control system via the communications network, displaying graphical user interfaces based on the received information, and controlling and configuring the load control system via graphical user interfaces by communicating via the communications network messages the load control system.
    Type: Application
    Filed: October 3, 2022
    Publication date: January 26, 2023
    Applicant: Lutron Technology Company LLC
    Inventors: Erica L Clymer, Christopher M. Jones, Benjamin F. Bard, Rhythm Agarwal, Shenchi Tian, Kyle T. Barco, Thomas L. Olson, Neil R. Orchowski
  • Patent number: 11563027
    Abstract: Microelectronic devices include a lower deck and an upper deck, each comprising a stack structure with a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A lower array of pillars extends through the stack structure of the lower deck, and an upper array of pillars extends through the stack structure of the upper deck. Along an interface between the lower deck and the upper deck, the pillars of the lower array align with the pillars of the upper array. At least at elevations comprising bases of the pillars, a pillar density of the pillars of the lower array differs from a pillar density of the pillars of the upper array, “pillar density” being a number of pillars per unit of horizontal area of the respective array. Related methods and electronic systems are also disclosed.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Md Zakir Ullah, Xiaosong Zhang, Adam L. Olson, Mohammad Moydul Islam, Tien Minh Quan Tran, Chao Zhu, Zhigang Yang, Merri L. Carlson, Hui Chin Chong, David A. Kewley, Kok Siak Tang
  • Publication number: 20230013939
    Abstract: A handheld fluid sprayer is configured to draw spray fluid from a reservoir mounted on the fluid sprayer and eject the spray fluid through a nozzle. The reservoir is removably mounted to the fluid sprayer. A priming pathway extends through the fluid sprayer and routes air out of the reservoir to prime the pump. The priming pathway extends from the reservoir and to a side of the pump opposite the reservoir.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 19, 2023
    Inventors: Robert W. Kinne, Diane L. Olson, Pamela J. Muetzel, Kirsten N. Norman
  • Publication number: 20230005819
    Abstract: A semiconductor device may include an embedded device comprising through silicon vias (TSVs) extending from a first surface to a second surface opposite the first surface, wherein the embedded device comprises an active device, a semiconductor die comprising an active surface formed at the first surface, an integrated passive device (IPD), or a passive device. Encapsulant may be disposed over at least five sides of the embedded device. A first electrical interconnect structure may be coupled to a first end of the TSV at the first surface of the embedded device, and a second electrical interconnect structure may be coupled to a second end of the TSV at the second surface of the embedded device. A semiconductor die (e.g. a system on chip (SoC), memory device, microprocessor, graphics processor, or analog device), may be mounted over the first electrical interconnect of the TSV.
    Type: Application
    Filed: June 15, 2022
    Publication date: January 5, 2023
    Inventors: Timothy L. Olson, Clifford Sandstrom, Craig Bishop, Robin Davis
  • Publication number: 20230005820
    Abstract: A method of making a semiconductor device may include providing a large semiconductor die comprising conductive interconnects with a first encapsulant disposed over four side surfaces of the large semiconductor die, over the active surface of the large semiconductor die, and around the conductive interconnects. A first build-up interconnect structure may be formed over the large semiconductor die and over the first encapsulant. Vertical conductive interconnects may be formed over the first build-up interconnect structure and around an embedded device mount site. An embedded device comprising through silicon vias (TSVs) may be disposed over the embedded device mount site. A second encapsulant may be disposed over the build-up structure, and around at least five sides of the embedded device. A second build-up structure may be formed disposed over the planar surface and configured to be electrically coupled to the TSVs of the embedded device and the vertical conductive interconnects.
    Type: Application
    Filed: June 16, 2022
    Publication date: January 5, 2023
    Inventors: Robin Davis, Timothy L. Olson, Craig Bishop, Clifford Sandstrom
  • Patent number: 11538759
    Abstract: A semiconductor device may comprise a bridge die comprising copper studs. Copper posts may be disposed in a periphery of the bridge die. An encapsulant may be disposed on five sides of the bridge die, on sides of the copper studs, and on sides of the copper posts that leave ends of the copper studs and opposing first and second ends of the copper posts exposed from the encapsulant. A frontside build-up interconnect structure may be formed over the copper studs of the bridge die and coupled to second ends of the copper posts opposite the first ends of the copper posts. The frontside build-up interconnect structure comprising first pads at a first pitch within a footprint of the bridge die and second pads at a second pitch outside a footprint of the bridge die. The first pitch may be at least 1.5 times less than the second pitch.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: December 27, 2022
    Assignee: Deca Technologies USA, Inc.
    Inventors: Timothy L. Olson, Craig Bishop, Clifford Sandstrom