Patents by Inventor Laertis Economikos

Laertis Economikos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10373875
    Abstract: Methods of fabricating structures that include contacts coupled with a source/drain region of a field-effect transistor. Source/drain regions are formed adjacent to a temporary gate structure. In one process, a sacrificial layer is disposed over the source/drain regions and a dielectric pillar is formed in the sacrificial layer between the source/drain regions, followed by deposition of a fill material, replacement of the temporary gate structure with a functional gate structure, and removal of the fill material. In another process, the fill material is formed first and the temporary gate structure is replaced by a functional gate structure; following removal of the fill material, a sacrificial layer is disposed over the source/drain regions and a dielectric pillar is formed in the sacrificial layer between the source/drain regions. A conductive layer having separate portions contacting the separate source/drain regions is formed, with the dielectric pillar separating the portions of the conductive layer.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 6, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Daniel Jaeger, Chanro Park, Laertis Economikos, Haiting Wang, Hui Zang
  • Publication number: 20190229019
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a contact over an active gate structure and methods of manufacture. The structure includes: an active gate structure composed of conductive material located between sidewall material; an upper sidewall material above the sidewall material, the upper sidewall material being different material than the sidewall material; and a contact structure in electrical contact with the conductive material of the active gate structure. The contact structure is located between the sidewall material and between the upper sidewall material.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Inventors: Jiehui Shu, Xusheng Wu, Haigou Huang, John H. Zhang, Pei Liu, Laertis Economikos
  • Publication number: 20190148373
    Abstract: The disclosure provides integrated circuit (IC) structures with single diffusion break (SDB) abutting end isolation regions, and methods of forming the same. An IC structure may include: a plurality of fins positioned on a substrate; a plurality of gate structures each positioned on the plurality of fins and extending transversely across the plurality of fins; an insulator region positioned on the plurality of fins and laterally between the plurality of gate structures; at least one single diffusion break (SDB) positioned within the insulator region and one of the plurality of fins, the at least one SDB region extending from an upper surface of the substrate to an upper surface of the insulator region; and an end isolation region abutting a lateral end of the at least one SDB along a length of the plurality of gate structures, the end isolation region extending substantially in parallel with the plurality of fins.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Yongiun Shi, Lei Sun, Laertis Economikos, Ruilong Xie, Lars Liebmann, Chanro Park, Daniel Chanemougame, Min Gyu Sung, Hsien-Ching Lo, Haiting Wang
  • Patent number: 10276391
    Abstract: Structures for a field-effect transistor and methods of forming a structure for field-effect transistor. A gate structure includes a work function metal layer, a first conductor layer, and a second conductor layer arranged over the work function metal layer. The second conductor layer has a sidewall and a top surface, and the first conductor layer has a first section arranged between the second conductor layer and the work function metal layer and a second section arranged adjacent to a first portion of the sidewall of the second conductor layer. A dielectric cap is arranged on the gate structure. The dielectric cap has a first section arranged over the top surface of the second conductor layer and a second section arranged adjacent to a second portion of the sidewall of the second conductor layer.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 30, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hui Zang, Ruilong Xie, Laertis Economikos
  • Patent number: 10236213
    Abstract: A gate cut structure for finFETs, and a related method, are disclosed. The gate cut structure separates and electrically isolates an end of a first metal gate conductor of a first finFET from an end of a second metal gate conductor of a second finFET. The gate cut structure includes a body contacting the end of the first and second metal gate conductors. A liner spacer separates a lower portion of the body from an interlayer dielectric (ILD), and an upper portion of the body contacts the ILD. During formation, the liner spacer allows for a larger gate cut opening to be used to allow quality cleaning of the gate cut opening, but also reduction in size of the spacing between metal gate conductor ends of the finFETs. In one example, the body may have a lower portion having a width less than an upper portion thereof.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 19, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shesh M. Pandey, Jiehui Shu, Hui Zang, Laertis Economikos
  • Publication number: 20190067115
    Abstract: A method of manufacturing a FinFET structure involves forming a gate cut within a sacrificial gate layer and backfilling the gate cut opening with an etch selective dielectric later. Lateral etching of the dielectric layer after removing remaining portions of the sacrificial gate can be used to increase the distance between the gate cut (isolation) structure and an adjacent fin relative to methods that do not perform a step of trimming the dielectric layer.
    Type: Application
    Filed: August 23, 2017
    Publication date: February 28, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Chanro PARK, Laertis ECONOMIKOS, Ruilong XIE, Min Gyu SUNG
  • Patent number: 10199271
    Abstract: A structure and method for forming a self-aligned metal wire on a contact structure. The method for forming the self-aligned metal wire and contact structure may include, among other things, forming an initial contact structure above a substrate; forming a patterned mask on the initial contact structure, the mask including an opening; using the patterned mask to form an opening through the initial contact structure; forming a dielectric layer in the openings; removing the patterned mask to expose a remaining portion of the initial contact structure; and forming the metal wire on the remaining portion of the initial contact structure. The contact structure may include a vertical cross-sectional geometry including one of a trapezoid wherein a bottommost surface of the first contact structure is wider than an uppermost surface of the first contact structure, and a parallelogram. The metal wire may completely contact an uppermost surface of the contact structure.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: February 5, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Guillaume Bouche, Laertis Economikos, Lei Sun, Guoxiang Ning, Xunyuan Zhang
  • Patent number: 10177041
    Abstract: Disclosed are method embodiments for forming an integrated circuit (IC) structure with at least one first-type FINFET and at least one second-type FINFET, wherein the first-type FINFET has a first replacement metal gate (RMG) adjacent to a first semiconductor fin, the second-type FINFET has a second RMG adjacent to a second semiconductor fin, and the first RMG is in end-to-end alignment with the second RMG and physically and electrically isolated from the second RMG by a dielectric column. The method embodiments minimize the risk of the occurrence defects within the RMGs by forming the dielectric column during formation of the first and second RMGs and, particularly, after deposition and anneal of a gate dielectric layer for the first and second RMGs, but before deposition of at least one of multiple work function metal layers. Also disclosed herein are IC structure embodiments formed according to the above-described method embodiments.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 8, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Laertis Economikos, Chanro Park, Min Gyu Sung
  • Patent number: 10157796
    Abstract: The disclosure relates to methods including: forming a soft mask; forming a first marking trench within a portion of the soft mask by selectively removing a portion of the soft mask at a first location, over one of a pair of gate trenches; forming an insulative liner on the soft mask and within the first marking trench; forming an anti-reflective film on the insulative liner and within the first marking trench; selectively removing the anti-reflective film and the insulative liner at a second location to expose a portion of the soft mask positioned over the other one of the pair of gate trenches; forming a second marking trench by removing another portion of the soft mask at the second location; and removing a portion of the soft mask at the first and second marking trenches to expose a lower surface of each of the pair of gate trenches.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: December 18, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Laertis Economikos, Chanro Park, Ruilong Xie, Pei Liu
  • Patent number: 10109505
    Abstract: The present disclosure is directed to fluid filtering systems and methods for use during semiconductor processing. One or more embodiments are directed to fluid filtering systems and methods for filtering ions and particles from a fluid as the fluid is being provided to a semiconductor wafer processing tool, such as to a semiconductor wafer cleaning tool.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John H. Zhang, Laertis Economikos, Adam Ticknor, Wei-Tsu Tseng
  • Patent number: 10090402
    Abstract: The method includes steps for improving gate cut isolation region critical dimension (CD) control. Prior to replacement metal gate (RMG) formation, a first sacrificial gate adjacent to first and second channel regions and made of a first sacrificial material (e.g., polysilicon or amorphous silicon) is replaced with a second sacrificial gate made of a second sacrificial material (e.g., amorphous carbon) that is more selectively and anisotropically etchable. A cut is made, dividing the second sacrificial gate into first and second sections, and the cut is then filled with a dielectric to form the gate cut isolation region. The second sacrificial material ensures that, when an opening in a mask pattern used to form the cut extends over a gate sidewall spacer and interlayer dielectric (ILD) material, recesses are not form within the spacer or ILD. Thus, the CD of the isolation region can be controlled.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 2, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chanro Park, Chang Ho Maeng, Pei Liu, Junsic Hong, Laertis Economikos, Ruilong Xie
  • Publication number: 20180261514
    Abstract: Disclosed are method embodiments for forming an integrated circuit (IC) structure with at least one first-type FINFET and at least one second-type FINFET, wherein the first-type FINFET has a first replacement metal gate (RMG) adjacent to a first semiconductor fin, the second-type FINFET has a second RMG adjacent to a second semiconductor fin, and the first RMG is in end-to-end alignment with the second RMG and physically and electrically isolated from the second RMG by a dielectric column. The method embodiments minimize the risk of the occurrence defects within the RMGs by forming the dielectric column during formation of the first and second RMGs and, particularly, after deposition and anneal of a gate dielectric layer for the first and second RMGs, but before deposition of at least one of multiple work function metal layers. Also disclosed herein are IC structure embodiments formed according to the above-described method embodiments.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 13, 2018
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Laertis Economikos, Chanro Park, Min Gyu Sung
  • Patent number: 10056469
    Abstract: A method for forming gate cuts during RMG processing and the resulting device are provided. Embodiments include forming Si fins over a substrate; forming a STI layer over the substrate and recessed, exposing upper portions of the Si fins; forming polysilicon dummy gate electrodes perpendicular to the Si fins, separated by STI regions, on the upper portions of the Si fins and on the STI layer between the Si fins; forming a hardmask over the polysilicon dummy gate electrodes; etching through the hardmask and polysilicon dummy gate electrodes forming cavities between some of the Si fins; oxidizing polysilicon exposed on sides of the cavities and any residual polysilicon remaining at a bottom of one or more of the cavities; filling the cavities with SiN; removing the polysilicon dummy gate electrodes; and forming RMGs.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: August 21, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui-feng Li, Laertis Economikos
  • Publication number: 20180233579
    Abstract: A method for forming gate cuts during RMG processing and the resulting device are provided. Embodiments include forming Si fins over a substrate; forming a STI layer over the substrate and recessed, exposing upper portions of the Si fins; forming polysilicon dummy gate electrodes perpendicular to the Si fins, separated by STI regions, on the upper portions of the Si fins and on the STI layer between the Si fins; forming a hardmask over the polysilicon dummy gate electrodes; etching through the hardmask and polysilicon dummy gate electrodes forming cavities between some of the Si fins; oxidizing polysilicon exposed on sides of the cavities and any residual polysilicon remaining at a bottom of one or more of the cavities; filling the cavities with SiN; removing the polysilicon dummy gate electrodes; and forming RMGs.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 16, 2018
    Inventors: Hui-feng LI, Laertis ECONOMIKOS
  • Patent number: 9966272
    Abstract: The disclosure is directed to methods of planarizing an integrated circuit structure including: forming a dielectric over a first nitride layer; planarizing the dielectric to a top surface of a set of nitride fins in a first region and removing the dielectric from a second region to expose the substantially planar upper surface in a second region; forming a second nitride layer over the dielectric and the top surface of the set of nitride fins and over the substantially planar upper surface; planarizing the second nitride layer such that the second nitride layer in the second region is planar with the top surface of the dielectric and the set of nitride fins, and such that the second nitride layer is removed from the first region; and performing an etch such that the first nitride layer in the first region is planar with the first nitride layer in the second region.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 8, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haifeng Sheng, Haigou Huang, Tai Fong Chao, Jiehui Shu, Jinping Liu, Xingzhao Shi, Laertis Economikos
  • Patent number: 9676075
    Abstract: Various particular embodiments include a method for controlling chemical mechanical polishing, including: polishing a semiconductor wafer in a chemical mechanical polishing (CMP) tool; measuring a resistance of a resistive pathway through the semiconductor wafer while the semiconductor wafer is undergoing polishing in the CMP tool; and terminating the polishing of the semiconductor wafer when the measured resistance reaches a target resistance.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: June 13, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Laertis Economikos, Elliott P. Rill
  • Publication number: 20170148647
    Abstract: The present disclosure is directed to fluid filtering systems and methods for use during semiconductor processing. One or more embodiments are directed to fluid filtering systems and methods for filtering ions and particles from a fluid as the fluid is being provided to a semiconductor wafer processing tool, such as to a semiconductor wafer cleaning tool.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: John H. Zhang, Laertis Economikos, Adam Ticknor, Wei-Tsu Tseng
  • Patent number: 9607864
    Abstract: The present disclosure is directed to fluid filtering systems and methods for use during semiconductor processing. One or more embodiments are directed to fluid filtering systems and methods for filtering ions and particles from a fluid as the fluid is being provided to a semiconductor wafer processing tool, such as to a semiconductor wafer cleaning tool.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: March 28, 2017
    Assignees: STMicroelectronics, Inc., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John H. Zhang, Laertis Economikos, Wei-Tsu Tseng, Adam Ticknor
  • Publication number: 20160361791
    Abstract: Various particular embodiments include a method for controlling chemical mechanical polishing, including: polishing a semiconductor wafer in a chemical mechanical polishing (CMP) tool; measuring a resistance of a resistive pathway through the semiconductor wafer while the semiconductor wafer is undergoing polishing in the CMP tool; and terminating the polishing of the semiconductor wafer when the measured resistance reaches a target resistance.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 15, 2016
    Inventors: Laertis Economikos, Elliott P. Rill
  • Patent number: 9058976
    Abstract: Cleaning solutions and processes for cleaning semiconductor devices or semiconductor tooling during manufacture thereof generally include contacting the semiconductor devices or semiconductor tooling with an acidic aqueous cleaning solution free of a fluorine containing compound, the acidic aqueous cleaning solution including at least one antioxidant and at least one non-oxidizing acid.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Vishal Chhabra, Laertis Economikos, John A. Fitzsimmons, James Hannah, Mahmoud Khojasteh, Jennifer Muncy