Patents by Inventor Lain-Jong Li

Lain-Jong Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250092511
    Abstract: A vapor deposition system is described. The vapor deposition system includes a reaction chamber and a reactant delivery subsystem coupled with the reaction chamber. The reaction chamber is configured to retain a substrate therein. The reactant delivery subsystem includes inlets, a pre-reaction region, and outlets. The inlets receive precursors and chalcogen precursor(s). The pre-reaction region is configured to receive the precursors from a portion of the inlets and to react at least a portion of the precursors to form modified precursor(s). The modified precursor(s) are more thermally stable than metal-containing precursor(s) of the precursors used to form the modified precursor(s). The outlets are coupled with the reaction chamber and the pre-reaction region. The outlets separately provide the modified precursor(s) and the chalcogen precursor(s) to the reaction chamber. The modified precursor(s) and the chalcogen precursor(s) react and form a chalcogen film on the substrate in the reaction chamber.
    Type: Application
    Filed: September 3, 2024
    Publication date: March 20, 2025
    Inventors: Lain-Jong Li, Yi Wan, Yu-Ming Chang
  • Patent number: 12237375
    Abstract: A semiconductor structure includes a semiconductor substrate, a plurality of stacked units, a conductive structure, a plurality of dielectrics, a first electrode strip, a second electrode strip, and a plurality of contact structures. The stacked units are stacked up over the semiconductor substrate, and comprises a first passivation layer, a second passivation layer and a channel layer sandwiched between the first passivation layer and the second passivation layer. The conductive structure is disposed on the semiconductor substrate and wrapping around the stacked units. The dielectrics are surrounding the stacked units and separating the stacked units from the conductive structure. The first electrode strip and the second electrode strip are located on two opposing sides of the conductive structure. The contact structures are connecting the channel layer of each of the stacked units to the first electrode strip and the second electrode strip.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Wei Shen, Tse-An Chen, Tung-Ying Lee, Lain-Jong Li
  • Publication number: 20250063771
    Abstract: A transistor device having fin structures, source and drain terminals, channel layers and a gate structure is provided. The fin structures are disposed on a material layer. The fin structures are arranged in parallel and extending in a first direction. The source and drain terminals are disposed on the fin structures and the material layer and cover opposite ends of the fin structures. The channel layers are disposed respectively on the fin structures, and each channel layer extends between the source and drain terminals on the same fin structure. The gate structure is disposed on the channel layers and across the fin structures. The gate structure extends in a second direction perpendicular to the first direction. The materials of the channel layers include a transition metal and a chalcogenide, the source and drain terminals include a metallic material, and the channel layers are covalently bonded with the source and drain terminals.
    Type: Application
    Filed: November 4, 2024
    Publication date: February 20, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Chao-Ching Cheng, Tzu-Ang Chao, Lain-Jong Li
  • Patent number: 12211930
    Abstract: A semiconductor device includes a substrate, a channel layer, an insulating layer, source/drain contacts, a gate dielectric layer, and a gate electrode. The channel layer over the substrate and includes two dimensional (2D) material. The insulating layer is on the channel layer. The source/drain contacts are over the channel layer. The gate dielectric layer is over the insulating layer and the channel layer. The gate electrode is over the gate dielectric layer and between the source/drain contacts.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 28, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tse-An Chen, Lain-Jong Li, Wen-Hao Chang, Chien-Chih Tseng
  • Patent number: 12170323
    Abstract: A method includes forming a first sacrificial layer over a substrate, and forming a sandwich structure over the first sacrificial layer. The sandwich structure includes a first isolation layer, a two-dimensional material over the first isolation layer, and a second isolation layer over the two-dimensional material. The method further includes forming a second sacrificial layer over the sandwich structure, forming a first source/drain region and a second source/drain region on opposing ends of, and contacting sidewalls of, the two-dimensional material, removing the first sacrificial layer and the second sacrificial layer to generate spaces, and forming a gate stack filling the spaces.
    Type: Grant
    Filed: August 6, 2023
    Date of Patent: December 17, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Yi-Tse Hung, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li, Jin Cai
  • Patent number: 12166113
    Abstract: A transistor device having fin structures, source and drain terminals, channel layers and a gate structure is provided. The fin structures are disposed on a material layer. The fin structures are arranged in parallel and extending in a first direction. The source and drain terminals are disposed on the fin structures and the material layer and cover opposite ends of the fin structures. The channel layers are disposed respectively on the fin structures, and each channel layer extends between the source and drain terminals on the same fin structure. The gate structure is disposed on the channel layers and across the fin structures. The gate structure extends in a second direction perpendicular to the first direction. The materials of the channel layers include a transition metal and a chalcogenide, the source and drain terminals include a metallic material, and the channel layers are covalently bonded with the source and drain terminals.
    Type: Grant
    Filed: October 3, 2023
    Date of Patent: December 10, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Chao-Ching Cheng, Tzu-Ang Chao, Lain-Jong Li
  • Publication number: 20240390861
    Abstract: A semiconductor device and method of manufacturing using carbon nanotubes are provided. In embodiments a stack of nanotubes are formed and then a non-destructive removal process is utilized to reduce the thickness of the stack of nanotubes. A device such as a transistor may then be formed from the reduced stack of nanotubes.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 28, 2024
    Inventors: Tzu-Ang Chao, Gregory Michael Pitner, Tse-An Chen, Lain-Jong Li, Yu Chao Lin
  • Patent number: 12151213
    Abstract: A semiconductor device and method of manufacturing using carbon nanotubes are provided. In embodiments a stack of nanotubes are formed and then a non-destructive removal process is utilized to reduce the thickness of the stack of nanotubes. A device such as a transistor may then be formed from the reduced stack of nanotubes.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: November 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzu-Ang Chao, Gregory Michael Pitner, Tse-An Chen, Lain-Jong Li, Yu Chao Lin
  • Publication number: 20240379440
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Publication number: 20240379800
    Abstract: A method includes forming a first sacrificial layer over a substrate, and forming a sandwich structure over the first sacrificial layer. The sandwich structure includes a first isolation layer, a two-dimensional material over the first isolation layer, and a second isolation layer over the two-dimensional material. The method further includes forming a second sacrificial layer over the sandwich structure, forming a first source/drain region and a second source/drain region on opposing ends of, and contacting sidewalls of, the two-dimensional material, removing the first sacrificial layer and the second sacrificial layer to generate spaces, and forming a gate stack filling the spaces.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Chao-Ching Cheng, Yi-Tse Hung, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li, Jin Cai
  • Publication number: 20240379832
    Abstract: A device includes a semiconductor substrate, a low-k dielectric layer over the semiconductor substrate, an isolation layer over the low-k dielectric layer, and a work function layer over the isolation layer. The work function layer is an n-type work function layer. The device further includes a low-dimensional semiconductor layer on a top surface and a sidewall of the work function layer, source/drain contacts contacting opposing end portions of the low-dimensional semiconductor layer, and a dielectric doping layer over and contacting a channel portion of the low-dimensional semiconductor layer. The dielectric doping layer includes a metal selected from aluminum and hafnium, and the channel portion of the low-dimensional semiconductor layer further comprises the metal.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Chun-Chieh Lu, Tzu Ang Chao, Chao-Ching Cheng, Lain-Jong Li
  • Publication number: 20240178005
    Abstract: A method of fabricating a semiconductor device includes applying a plasma to a portion of a metal dichalcogenide film. The metal dichalcogenide film includes a first metal and a chalcogen selected from the group consisting of S, Se, Te, and combinations thereof. A metal layer including a second metal is formed over the portion of the metal dichalcogenide film after applying the plasma.
    Type: Application
    Filed: February 5, 2024
    Publication date: May 30, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Piao CHUU, Ming-Yang LI, Lain-Jong LI
  • Publication number: 20240155954
    Abstract: An array of rail structures is formed over a substrate. Each rail structure includes at least one bit line. Dielectric isolation structures straddling the array of rail structures are formed. Line trenches are provided between neighboring pairs of the dielectric isolation structures. A layer stack of a resistive memory material layer and a selector material layer is formed within each of the line trenches. A word line is formed on each of the layer stacks within unfilled volumes of the line trenches. The word lines or at least a subset of the bit lines includes a carbon-based conductive material containing hybridized carbon atoms in a hexagonal arrangement to provide a low resistivity conductive structure. An array of resistive memory elements is formed over the substrate. A plurality of arrays of resistive memory elements may be formed at different levels over the substrate.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Lain-Jong Li
  • Patent number: 11955527
    Abstract: A method includes forming a first sacrificial layer over a substrate, and forming a sandwich structure over the first sacrificial layer. The sandwich structure includes a first isolation layer, a two-dimensional material over the first isolation layer, and a second isolation layer over the two-dimensional material. The method further includes forming a second sacrificial layer over the sandwich structure, forming a first source/drain region and a second source/drain region on opposing ends of, and contacting sidewalls of, the two-dimensional material, removing the first sacrificial layer and the second sacrificial layer to generate spaces, and forming a gate stack filling the spaces.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Cheng, Yi-Tse Hung, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li, Jin Cai
  • Publication number: 20240105515
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Patent number: 11923203
    Abstract: A method of fabricating a semiconductor device includes applying a plasma to a portion of a metal dichalcogenide film. The metal dichalcogenide film includes a first metal and a chalcogen selected from the group consisting of S, Se, Te, and combinations thereof. A metal layer including a second metal is formed over the portion of the metal dichalcogenide film after applying the plasma.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Piao Chuu, Ming-Yang Li, Lain-Jong Li
  • Publication number: 20240063297
    Abstract: A semiconductor device includes a substrate, a channel layer, an insulating layer, source/drain contacts, a gate dielectric layer, and a gate electrode. The channel layer over the substrate and includes two dimensional (2D) material. The insulating layer is on the channel layer. The source/drain contacts are over the channel layer. The gate dielectric layer is over the insulating layer and the channel layer. The gate electrode is over the gate dielectric layer and between the source/drain contacts.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tse-An CHEN, Lain-Jong LI, Wen-Hao CHANG, Chien-Chih TSENG
  • Patent number: 11910732
    Abstract: An array of rail structures is formed over a substrate. Each rail structure includes at least one bit line. Dielectric isolation structures straddling the array of rail structures are formed. Line trenches are provided between neighboring pairs of the dielectric isolation structures. A layer stack of a resistive memory material layer and a selector material layer is formed within each of the line trenches. A word line is formed on each of the layer stacks within unfilled volumes of the line trenches. The word lines or at least a subset of the bit lines includes a carbon-based conductive material containing hybridized carbon atoms in a hexagonal arrangement to provide a low resistivity conductive structure. An array of resistive memory elements is formed over the substrate. A plurality of arrays of resistive memory elements may be formed at different levels over the substrate.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Tzu-Chiang Chen, Lain-Jong Li
  • Publication number: 20240030325
    Abstract: A transistor device having fin structures, source and drain terminals, channel layers and a gate structure is provided. The fin structures are disposed on a material layer. The fin structures are arranged in parallel and extending in a first direction. The source and drain terminals are disposed on the fin structures and the material layer and cover opposite ends of the fin structures. The channel layers are disposed respectively on the fin structures, and each channel layer extends between the source and drain terminals on the same fin structure. The gate structure is disposed on the channel layers and across the fin structures. The gate structure extends in a second direction perpendicular to the first direction. The materials of the channel layers include a transition metal and a chalcogenide, the source and drain terminals include a metallic material, and the channel layers are covalently bonded with the source and drain terminals.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Chao-Ching Cheng, Tzu-Ang Chao, Lain-Jong Li
  • Patent number: 11854895
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li