Patents by Inventor Lain-Jong Li

Lain-Jong Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8858776
    Abstract: A method of preparing graphene sheets. The method includes: immersing a portion of a first electrode and a portion of a second electrode in a solution containing an acid, an anionic surfactant, a salt, an oxidizing agent, or any combination thereof as an electrolyte, the immersed portion of the first electrode including a first carbon material and the immersed portion of the second electrode including a second carbon material or a metal; causing a potential to exist between the first and second electrodes; and recovering, from the solution, graphene sheets exfoliated from the carbon material(s). Also disclosed is a method of preparing a graphene film electrode. The method includes: dissolving graphene sheets in an organic solvent to form a solution, applying the solution on a substrate, adding deionized water to the solution on the substrate so that a graphene film is formed, and drying the graphene film.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 14, 2014
    Assignee: Academia Sinica
    Inventors: Lain-Jong Li, Ching-Yuan Su
  • Publication number: 20140245946
    Abstract: Aromatic molecules are seeded on a surface of a growth substrate; and a layer (e.g., a monolayer) of a metal dichalcogenide is grown via chemical vapor deposition on the growth substrate surface seeded with aromatic molecules. The seeded aromatic molecules are contacted with a solvent that releases the metal dichalcogenide layer from the growth substrate. The metal dichalcogenide layer can be released with an adhered transfer medium and can be deposited on a target substrate.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Jing Kong, Lain-Jong Li, Yi-Hsien Lee
  • Publication number: 20140166500
    Abstract: Disclosed is a method of producing thin graphene nanoplatelets, and the method includes the steps of providing a carbon precursor and a filling material, using the carbon precursor as a binding agent to mix with the filling material thoroughly, producing a composite material through a forming process, performing a heat treatment of the composite material under an atmosphere and at different temperatures to improve the electrical conductivity and adjust to an appropriate binding strength, perform a carbon conversion of the composite material with a good graphite cyrstallinity to produce a layered graphite structure of a thin graphene nanoplatelet precursor, while obtaining high quality graphene by performing an electrochemical process of the thin graphene nanoplatelet precursor, so as to achieve the mass production of the high quality thin graphene nanoplateletes with a low cost.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: CHUNG-SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yi-Cheng Cheng, Lain-Jong Li, Chuen-Ming Gee, Ching-Yuan Su, Ching-Jang Lin
  • Publication number: 20140166475
    Abstract: Disclosed is a device designed for a continuous production of graphene flakes by an electrochemical method. The device consists of an electrochemical unit for generating graphene flakes by an electrochemical exfoliation; a filtration unit for separating the graphene flakes from an electrolyte solution; a guiding path connected to the electrochemical unit and transports the graphene flakes and the electrolyte solution into the filtration unit; a grading collection unit for accepting the separated graphene flakes from the filtration unit and separating the graphene flakes by size. The device can achieve the effect of producing high-quality graphene flakes in mass production electrochemically, continuously and quickly.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: CHUNG-SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yi-Cheng Cheng, Tzeng-Lu Yeh, Lain-Jong Li, Chuen-Ming Gee, Ching-Jang Lin, Cheng-Te Lin
  • Patent number: 8685843
    Abstract: Graphene layers can be formed on a dielectric substrate using a process that includes forming a copper thin film on a dielectric substrate; diffusing carbon atoms through the copper thin film; and forming a graphene layer at an interface between the copper thin film and the dielectric substrate.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: April 1, 2014
    Assignee: Academia Sinica
    Inventors: Lain-Jong Li, Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu, Keng-Ku Liu
  • Publication number: 20140023926
    Abstract: A battery includes a first electrode including a plurality of particles containing lithium, a layer of carbon at least partially coating a surface of each particle, and electrochemically exfoliated graphene at least partially coating one or more of the plurality of particles. The battery includes a second electrode and an electrolyte. At least a portion of the first electrode and at least a portion of the second electrode contact the electrolyte.
    Type: Application
    Filed: March 13, 2013
    Publication date: January 23, 2014
    Applicant: ACADEMIA SINICA
    Inventors: Lain-Jong Li, Lung-Hao Hu, Cheng-Te Lin, Feng-Yu Wu
  • Patent number: 8592291
    Abstract: A hexagonal boron nitride thin film is grown on a metal surface of a growth substrate and then annealed. The hexagonal boron nitride thin film is coated with a protective support layer and released from the metal surface. The boron nitride thin film together with the protective support layer can then be transferred to any of a variety of arbitrary substrates.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: November 26, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Yumeng Shi, Jing Kong, Christoph Hamsen, Lain-Jong Li
  • Patent number: 8445889
    Abstract: A method of patterning nanostructures comprising printing an ink comprising the nanostructures onto a solvent-extracting first surface such that a pattern of nanostructures is formed on the first surface.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: May 21, 2013
    Assignee: Nanyang Technological University
    Inventors: Kumar Bhupendra, Yuanyuan Zhang, Zongbin Wang, Lain-Jong Li, Subodh Gautam Mhaisalkar
  • Publication number: 20130040439
    Abstract: Various embodiments relate to a method of modifying the electrical properties of carbon nanotubes. The method may include providing a substrate having carbon nanotubes deposited on a surface of the substrate, and depositing on the carbon nanotubes a coating layer comprising a mixture of nanoparticles, a matrix in which the nanoparticles are dissolved or stabilized, and an ionic liquid. A field-effect transistor including the modified carbon nanotubes is also provided.
    Type: Application
    Filed: February 7, 2011
    Publication date: February 14, 2013
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Jianwen Zhao, Lain-Jong Li, Peng Chen, Bee Eng Mary Chan
  • Publication number: 20130001089
    Abstract: A method of preparing graphene sheets. The method includes: immersing a portion of a first electrode and a portion of a second electrode in a solution containing an acid, an anionic surfactant, a salt, an oxidizing agent, or any combination thereof as an electrolyte, the immersed portion of the first electrode including a first carbon material and the immersed portion of the second electrode including a second carbon material or a metal; causing a potential to exist between the first and second electrodes; and recovering, from the solution, graphene sheets exfoliated from the carbon material(s). Also disclosed is a method of preparing a graphene film electrode. The method includes: dissolving graphene sheets in an organic solvent to form a solution, applying the solution on a substrate, adding deionized water to the solution on the substrate so that a graphene film is formed, and drying the graphene film.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: Academia Sinica
    Inventors: Lain-Jong Li, Ching-Yuan Su
  • Publication number: 20130001515
    Abstract: Graphene layers can be formed on a dielectric substrate using a process that includes forming a copper thin film on a dielectric substrate; diffusing carbon atoms through the copper thin film; and forming a graphene layer at an interface between the copper thin film and the dielectric substrate.
    Type: Application
    Filed: January 9, 2012
    Publication date: January 3, 2013
    Inventors: Lain-Jong Li, Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu, Keng-Ku Liu
  • Publication number: 20120171103
    Abstract: The invention relates to a method of modifying electrical properties of carbon nanotubes by subjecting a composition of carbon nanotubes to one or more radical initiator(s). The invention also relates to an electronic component such as field-effect transistor comprising a carbon nanotube obtained using the method of the invention. The invention also relates to the use of the modified carbon nanotubes in conductive and high-strength nanotube/polymer composites, transparent electrodes, sensors and nanoelectromechanical devices, additives for batteries, radiation sources, semiconductor devices (e.g. transistors) or interconnects.
    Type: Application
    Filed: June 28, 2010
    Publication date: July 5, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Jianwen Zhao, Lain-Jong Li, Peng Chen, Bee Eng Mary Chan
  • Publication number: 20110256386
    Abstract: A hexagonal boron nitride thin film is grown on a metal surface of a growth substrate and then annealed. The hexagonal boron nitride thin film is coated with a protective support layer and released from the metal surface. The boron nitride thin film together with the protective support layer can then be transferred to any of a variety of arbitrary substrates.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 20, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yumeng Shi, Jing Kong, Christoph Hamsen, Lain-Jong Li
  • Publication number: 20110001118
    Abstract: A method of patterning nanostructures comprising printing an ink comprising the nanostructures onto a solvent-extracting first surface such that a pattern of nanostructures is formed on the first surface.
    Type: Application
    Filed: February 23, 2009
    Publication date: January 6, 2011
    Inventors: Kumar Bhupendra, Yuanyuan Zhang, Zongbin Wang, Lain-Jong Li, Subodh Gautam Mhaisalkar
  • Publication number: 20060115980
    Abstract: A method of forming a low dielectric constant film that can be used in a damascene process is disclosed. An organosilicon precursor such as octamethylcyclotrisiloxane (OMCTS) or any other compound that contains Si, C, and H and optionally O is transported into a PECVD chamber with a carrier gas such as CO or CO2 to provide a soft oxidation environment that leads to a higher carbon content and low k value in the deposited film. The carrier gas may replace helium or argon that have a higher bombardment property that can damage the substrate. Since CO and CO2 can contribute carbon to the deposited film, a lower k value is achieved than when an inert carrier gas is employed. The deposited film can be employed, for example, as a dielectric layer in a damascene stack or as an etch stop layer.
    Type: Application
    Filed: May 16, 2005
    Publication date: June 1, 2006
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chi Ko, Lih-Ping Li, Lain-Jong Li, Syun-Ming Jang
  • Patent number: 7042049
    Abstract: A new method of forming a composite etching stop layer is described. An etching stop layer is deposited on a substrate wherein the etching stop layer is selected from the group consisting of: silicon carbide, silicon nitride, SiCN, SiOC, and SiOCN. A TEOS oxide layer is deposited by plasma-enhanced chemical vapor deposition overlying the etching stop layer. The composite etching stop layer has improved moisture resistance, better etching selectivity, and lower dielectric constant than other etching stop layers.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: May 9, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lain-Jong Li, Tien-I Bao, Shwang-Ming Jeng, Syun-Ming Jang, Jun-Lung Huang, Jeng-Cheng Liu
  • Publication number: 20060024954
    Abstract: A method for forming a damascene with improved electrical properties and resulting structure thereof including providing at least one dielectric insulating layer overlying a first etch stop layer; forming an anti-reflectance coating (ARC) layer prior to a photolithographic patterning process; forming at least one opening extending through a thickness portion of the at least one dielectric insulating layer and first etch stop layer according to said photolithographic patterning and an etching process; blanket depositing a barrier layer including material selected from the group consisting of silicon carbide and silicon oxycarbide to line the at least one opening; blanket depositing a refractory metal liner over the barrier layer; blanket depositing at least one metal layer to fill the at least one opening; and, removing at least the at least one metal layer overlying the at least one opening level according to a chemical mechanical polish (CMP) process.
    Type: Application
    Filed: August 2, 2004
    Publication date: February 2, 2006
    Inventors: Zhen-Cheng Wu, Lain-Jong Li, Yung-Chen Lu, Syun-Ming Jang
  • Patent number: 6908773
    Abstract: Attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) metal surface cleanliness monitoring is disclosed. A metal surface of a semiconductor die is impinged with an infrared (IR) beam, such as can be accomplished by using an ATR technique. The IR beam as reflected by the metal surface is measured. For instance, an interferogram of the reflected IR beam may be measured. A Fourier transform of the interferogram may also be performed, in accordance with an FTIR technique. To determine whether the metal surface is contaminated, the IR beam as reflected is compared to a reference sample. For example, the Fourier transform of the interferogram may be compared to the reference sample. If there is deviation by more than a threshold, the metal surface may be concluded as being contaminated.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 21, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lain-Jong Li, Syun-Ming Jang, Chung-Chi Ko
  • Patent number: 6884659
    Abstract: In accordance with the objectives of the invention a new method is provided for improving adhesion strength that is deposited over the surface of a layer of copper. Conventional etch stop layers of for instance dichlorosilane (SiCl2H2) or SiOC have poor adhesion with an underlying layer of copper due to poor molecular binding between the interfacing layers. The surface of the deposited layer of copper can be provided with a special enhanced interface layer by using a method provided by the invention. That is pre-heat of the copper layer followed by a pre-cleaning treatment with ammonia (NH3) and N2, followed by forming an adhesive enhanced layer over the copper layer by treatment with N2 or O2 or N2 with alkyl-silane or alkyl silane.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: April 26, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Trong Chen, Lain-Jong Li, Syun-Ming Jang, Shu E Ku, Tien I. Bao, Lih-Ping Li
  • Patent number: 6878621
    Abstract: A method for forming at least one barrierless, embedded metal structure comprising the following steps. A structure having a patterned dielectric layer formed thereover with at least one opening exposing at least one respective portion of the structure. Respective metal structures are formed within each respective opening. The first dielectric layer is removed to expose the top and at least a portion of the side walls of the respective at least one metal structure. A dielectric barrier layer is formed over the structure and the exposed top of the respective metal structure. A second, conformal dielectric layer is formed over the dielectric barrier layer to complete the respective barrierless at least one metal structure embedded within the second, conformal dielectric layer. The dielectric barrier layer preventing diffusion of the metal comprising the respective at least one metal structure into the second, conformal dielectric layer.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: April 12, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhen-Cheng Wu, Lain-Jong Li, Yung-Chen Lu, Syun-Ming Jang