Patents by Inventor Lawrence C. Gunn, III

Lawrence C. Gunn, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10727944
    Abstract: Methods and systems for optoelectronics transceivers of a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers, which may include a guard ring. A CW optical signal may be received from a laser source via optical couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and/or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and/or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and/or a vertical-cavity surface emitting semiconductor laser.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: July 28, 2020
    Assignee: Luxtera LLC.
    Inventors: Thierry Pinguet, Steffen Gloeckner, Sherif Abdalla, Sina Mirsaidi, Peter De Dobbelaere, Lawrence C. Gunn, III
  • Publication number: 20190342006
    Abstract: Methods and systems for optoelectronics transceivers of a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers, which may include a guard ring. A CW optical signal may be received from a laser source via optical couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and/or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and/or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and/or a vertical-cavity surface emitting semiconductor laser.
    Type: Application
    Filed: July 2, 2019
    Publication date: November 7, 2019
    Inventors: Thierry Pinguet, Steffen Gloeckner, Sherif Abdalla, Sina Mirsaidi, Peter De Dobbelaere, Lawrence C. Gunn, III
  • Publication number: 20190003975
    Abstract: Various embodiments are drawn to systems and methods for detecting an analyte of interest in a sample including an optical sensor, a capture probe attached to a surface of the optical sensor wherein the capture probe is capable of binding to the analyte to form a duplex or complex, and an antibody capable of binding to the analyte, duplex, or complex. In several embodiments, systems and methods further include a particle attached to the antibody or capable of binding to the antibody. In several embodiments, systems and methods for analyte detection feature one or more of the following: high detection sensitivity and specificity, scalability and multiplex capacity, ability to analyze large analytes, and ability to detect or measure multiple individual binding events in real-time.
    Type: Application
    Filed: March 19, 2018
    Publication date: January 3, 2019
    Inventors: Ryan C. Bailey, Abraham J. Qavi, Jared T. Kindt, Ji-Yeon Byeon, Matthew S. Luchansky, Melinda S. McClellan, Adam L. Washburn, Tate Owen, Martin Anthony Gleeson, Lawrence C. Gunn, III
  • Patent number: 9921165
    Abstract: Various embodiments are drawn to systems and methods for detecting an analyte of interest in a sample including an optical sensor, a capture probe attached to a surface of the optical sensor wherein the capture probe is capable of binding to the analyte to form a duplex or complex, and an antibody capable of binding to the analyte, duplex, or complex. In several embodiments, systems and methods further include a particle attached to the antibody or capable of binding to the antibody. In several embodiments, systems and methods for analyte detection feature one or more of the following: high detection sensitivity and specificity, scalability and multiplex capacity, ability to analyze large analytes, and ability to detect or measure multiple individual binding events in real-time.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: March 20, 2018
    Assignees: Genalyte, Inc., The Board of Trustees of the University of Illinois
    Inventors: Ryan C. Bailey, Abraham J. Qavi, Jared T. Kindt, Ji-Yeon Byeon, Matthew S. Luchansky, Melinda S. McClellan, Adam L. Washburn, Tate Owen, Martin Anthony Gleeson, Lawrence C. Gunn, III
  • Patent number: 9813152
    Abstract: Methods and systems for optoelectronics transceivers integrated on a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers on a top surface of a CMOS chip, which may include a guard ring. Photodetectors may be integrated in the CMOS chip. A CW optical signal may be received from a laser source via grating couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and/or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the top surface of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and/or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and/or a vertical-cavity surface emitting semiconductor laser.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 7, 2017
    Assignee: Luxtera, Inc.
    Inventors: Thierry Pinguet, Steffen Gloeckner, Sherif Abdalla, Sina Mirsaidi, Peter De Dobbelaere, Lawrence C. Gunn, III
  • Publication number: 20130295688
    Abstract: Various embodiments are drawn to systems and methods for detecting an analyte of interest in a sample including an optical sensor, a capture probe attached to a surface of the optical sensor wherein the capture probe is capable of binding to the analyte to form a duplex or complex, and an antibody capable of binding to the analyte, duplex, or complex. In several embodiments, systems and methods further include a particle attached to the antibody or capable of binding to the antibody. In several embodiments, systems and methods for analyte detection feature one or more of the following: high detection sensitivity and specificity, scalability and multiplex capacity, ability to analyze large analytes, and ability to detect or measure multiple individual binding events in real-time.
    Type: Application
    Filed: November 4, 2011
    Publication date: November 7, 2013
    Inventors: Ryan C. Bailey, Abraham J. Qavi, Jared T. Kindt, Ji-Yeon Byeon, Matthew S. Luchansky, Melinda S. McClellan, Adam L. Washburn, Tate Owen, Martin Anthony Gleeson, Lawrence C. Gunn, III
  • Publication number: 20130094865
    Abstract: Methods and systems for optoelectronics transceivers integrated on a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers on a top surface of a CMOS chip, which may include a guard ring. Photodetectors may be integrated in the CMOS chip. A CW optical signal may be received from a laser source via grating couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and/or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the top surface of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and/or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and/or a vertical-cavity surface emitting semiconductor laser.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 18, 2013
    Inventors: Thierry Pinguet, Steffen Gloeckner, Sherif Abdalla, Sina Mirsaidi, Peter De Dobbelaere, Lawrence C. Gunn, III
  • Patent number: 7994066
    Abstract: A method is disclosed for the cleaning of a Si surface at low temperatures. Oxide on the Si surface is brought into contact with Ge, which then sublimates off the surface. The Ge contamination remaining after the oxide removal is cleared away by an exposure to an alkali halide. The disclosed cleaning method may by used in semiconductor circuit fabrication for preparing surfaces ahead of epitaxial growth.
    Type: Grant
    Filed: October 13, 2007
    Date of Patent: August 9, 2011
    Assignee: Luxtera, Inc.
    Inventors: Giovanni Capellini, Gianlorenzo Masini, Lawrence C. Gunn, III, Jeremy Witzens, Joseph W. White
  • Patent number: 7899276
    Abstract: Various embodiments described herein comprises an optoelectronic device comprising a waveguide structure including a plurality of optical modulator elements each having an optical property that is adjustable upon application of an electrical signal so as to modulate light guided in the waveguide structure. The optoelectronic device also comprises a plurality of amplifiers in distributed fashion. Each amplifier is electrically coupled to one of the optical modulators to apply electrical signals to the optical modulator.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: March 1, 2011
    Assignee: Luxtera, Inc.
    Inventors: Daniel Kucharski, Behnam Analui, Lawrence C. Gunn, III, Roger Koumans, Thierry Pinguet, Thiruvikraman Sadagopan
  • Patent number: 7616904
    Abstract: A germanium on silicon waveguide photodetector disposed on a silicon on insulator (SOI) substrate. The photodetector is incorporated into a section of a planar silicon waveguide on the substrate. The photodetector generates an electric current as an infrared optical signal travels through the photodetector.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: November 10, 2009
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier, Giovanni Capellini
  • Patent number: 7613369
    Abstract: A CMOS processing compatible germanium on silicon integrated waveguide photodiode. Positioning contacts in predicted low optical field regions, establishing side trenches in the silicon layer along the length of the photodiode reduces optical losses. Novel taper dimensions are selected based on the desirability of expected operational modes, reducing optical losses when light is injected from the silicon layer to the germanium layer. Reduced vertical mismatch systems have improved coupling between waveguide and photodiode. Light is coupled into and/or out of a novel silicon ring resonator and integrated waveguide photodiode system with reduced optical losses by careful design of the geometry of the optical path. An integrated waveguide photodiode with a reflector enables transmitted light to reflect back through the integrated waveguide photodiode, improving sensitivity. Careful selection of the dimensions of a novel integrated waveguide microdisk photodiode system results in reduced scattering.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: November 3, 2009
    Assignee: Luxtera, Inc.
    Inventors: Jeremy Witzens, Gianlorenzo Masini, Giovanni Capellini, Lawrence C. Gunn, III
  • Patent number: 7586608
    Abstract: This application describes, among others, wafer designs, testing systems and techniques for wafer-level optical testing by coupling probe light from top of the wafer.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 8, 2009
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Roman Malendevich, Thierry J. Pinguet, Maxime Jean Rattier, Myles Sussman, Jeremy Witzens
  • Publication number: 20090148094
    Abstract: Various embodiments described herein comprises an optoelectronic device comprising a waveguide structure including a plurality of optical modulator elements each having an optical property that is adjustable upon application of an electrical signal so as to modulate light guided in the waveguide structure. The optoelectronic device also comprises a plurality of amplifiers in distributed fashion. Each amplifier is electrically coupled to one of the optical modulators to apply electrical signals to the optical modulator.
    Type: Application
    Filed: January 12, 2009
    Publication date: June 11, 2009
    Inventors: Daniel Kucharski, Bahnam Analui, Lawrence C. Gunn, III, Roger Koumans, Thierry Pinguet, Thiruvikraman Sadagopan
  • Patent number: 7515775
    Abstract: Various embodiments described herein comprises an optoelectronic device comprising a waveguide structure including a plurality of optical modulator elements each having an optical property that is adjustable upon application of an electrical signal so as to modulate light guided in the waveguide structure. The optoelectronic device also comprises a plurality of amplifiers in distributed fashion. Each amplifier is electrically coupled to one of the optical modulators to apply electrical signals to the optical modulator.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: April 7, 2009
    Assignee: Luxtera, Inc.
    Inventors: Daniel Kucharski, Behnam Analui, Lawrence C. Gunn, III, Roger Koumans, Thierry Pinguet, Thiruvikraman Sadagopan
  • Patent number: 7453132
    Abstract: A germanium on silicon waveguide photodetector disposed on a silicon on insulator (SOI) substrate. The photodetector is incorporated into a section of a planar silicon waveguide on the substrate. The photodetector generates an electric current as an infrared optical signal travels through the photodetector.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: November 18, 2008
    Assignee: Luxtera Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier, Giovanni Capellini
  • Patent number: 7450787
    Abstract: High speed optical modulators can be made of k modulators connected in series disposed on one of a variety of semiconductor substrates. An electrical signal propagating in a microwave transmission line is tapped off of the transmission line at regular intervals and is amplified by k distributed amplifiers. Each of the outputs of the k distributed amplifiers is connected to a respective one of the k modulators. Distributed amplifier modulators can have much higher modulating speeds than a comparable lumped element modulator, due to the lower capacitance of each of the k modulators. Distributed amplifier modulators can have much higher modulating speeds than a comparable traveling wave modulator, due to the impedance matching provided by the distributed amplifiers.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 11, 2008
    Assignee: Luxtera, Inc.
    Inventors: Daniel Kucharski, Behnam Analui, Lawrence C. Gunn, III, Roger Koumans, Thierry Pinguet, Thiruvikraman Sadagopan
  • Patent number: 7412138
    Abstract: This application describes, among others, wafer designs, testing systems and techniques for wafer-level optical testing by coupling probe light to/from the top of a wafer. A wafer level test system uses optical and electronic probes to search for and align with an optoelectronic alignment structure. The test system uses a located optoelectronic alignment structure as a reference point to locate other devices on the wafer. The system tests the operation of selected devices disposed on the wafer. The optoelectronic alignment loop is also used as an alignment reference of known performance for an adjacent device of unknown performance.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 12, 2008
    Assignee: Luxtera, Inc.
    Inventors: Roman Malendevich, Myles Sussman, Lawrence C. Gunn, III
  • Patent number: RE45214
    Abstract: A transceiver on a CMOS chip including optical and optoelectronic devices, and electronic circuitry may be operable to communicate optical signals between the CMOS chip and optical fibers coupled to the CMOS chip via a semiconductor laser and one or more photodetectors. The optical and optoelectronic devices may include waveguides, modulators, multiplexers, switches, and couplers. The photodetector may be integrated in the CMOS chip. The photodetector and the semiconductor laser may be mounted on the CMOS chip. The optical signals may be communicated out of and in to a top surface of the CMOS chip. A transceiver on a CMOS chip including optical and optoelectronic devices, and electronic circuitry, may be operable to communicate optical signals between the CMOS chip and optical fibers coupled to the CMOS chip via grating couplers. The optical signals may be communicated out of and in to a top surface of the CMOS chip.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 28, 2014
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn, III
  • Patent number: RE45215
    Abstract: A transceiver comprising a plurality of CMOS chips may be operable to communicate an optical source signal from a semiconductor laser into a first CMOS chip via optical couplers. The optical source signal may be used to generate first optical signals that are transmitted from the first CMOS chip to optical fibers coupled to the first CMOS chip via one or more optical couplers. Second optical signals may be received from the optical fibers and converted to electrical signals via photodetectors in the first CMOS chip. The optical source signal may be communicated from the semiconductor laser into the first CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the first CMOS chip. The electrical signals may be communicated to at least a second of the plurality of CMOS chips comprising electronic devices.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 28, 2014
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn, III
  • Patent number: RE45390
    Abstract: A transceiver comprising a CMOS chip and a laser coupled to the chip may be operable to communicate an optical source signal from a semiconductor laser into the CMOS chip. The optical source signal may be used to generate first optical signals that are transmitted from the CMOS chip to optical fibers coupled to the CMOS chip. Second optical signals may be received from the optical fibers and converted to electrical signals via photodetectors in the CMOS chip. The optical source signal may be communicated from the semiconductor laser into the CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the CMOS chip. The optical source signal may be communicated into the CMOS chip and the first optical signals may be communicated from the CMOS chip via optical couplers, which may comprise grating couplers.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 24, 2015
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn, III