Patents by Inventor Li TING

Li TING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220172693
    Abstract: A calibration method for splicing displays including initializing a plurality of displays, obtaining the gamuts of the displays, setting a display with the smallest gamut among the displays as the reference display, adjusting the color temperature, brightness and six-axis hue and saturation of the reference display respectively to a reference color temperature, a reference brightness and reference RGB coordinates, and adjusting the displays according to the reference color temperature, the reference brightness and the reference RGB coordinates.
    Type: Application
    Filed: August 10, 2021
    Publication date: June 2, 2022
    Applicants: BenQ Intelligent Technology (Shanghai) Co., Ltd, BENQ CORPORATION
    Inventors: Li-Ting Tsai, Yi-Ho Bai
  • Publication number: 20220138448
    Abstract: The disclosure provides a touch recognition device, including a display device and manufacturing method thereof. The touch recognition device includes a substrate, a thin film transistor layer, a transparent conductive layer, a first metal layer, a piezoelectric material layer and a second metal layer. The transparent conductive layer is disposed on an end of the thin film transistor layer, and the transparent conductive layer includes a plurality of transparent electrodes. The first metal layer is adjacent to the plurality of transparent electrodes. The piezoelectric material layer is disposed on the transparent conductive layer and the first metal layer. The second metal layer is disposed on the piezoelectric material layer to achieve the effect of increasing voltage of signals and power of ultrasound.
    Type: Application
    Filed: February 5, 2021
    Publication date: May 5, 2022
    Inventors: Li-Ting CHENG, Shih-Chieh HUANG
  • Publication number: 20220140079
    Abstract: A method includes forming a gate stack on a first portion of a semiconductor substrate, removing a second portion of the semiconductor substrate on a side of the gate stack to form a recess, growing a semiconductor region starting from the recess, implanting the semiconductor region with an impurity, and performing a melt anneal on the semiconductor region. At least a portion of the semiconductor region is molten during the melt anneal.
    Type: Application
    Filed: January 17, 2022
    Publication date: May 5, 2022
    Inventors: Su-Hao Liu, Wen-Yen Chen, Li-Heng Chen, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Ying-Lang Wang
  • Publication number: 20220127234
    Abstract: In certain aspects, the invention provides crystalline forms of ivacaftor N-(2,4-di-tert-butyl-phenyl-5-hydroxy-phenyl)-1,4-dihydro-4-oxoquinoline-3-carboxamide. In related aspects, the invention provides a process for preparing any one of crystalline forms S2, S3, S4 and S5 of ivacaftor. The process includes: forming a solution including crude ivacaftor and a solvent; adding an anti-solvent to the solution to form slurry including a precipitate; isolating the precipitate; and drying the precipitate to provide crystalline form S2, S3, S4, or S5 of ivacaftor.
    Type: Application
    Filed: March 12, 2021
    Publication date: April 28, 2022
    Inventors: Kuan-Hsun HUANG, Li-Ting WANG, Inze LIN, Tsung-Cheng HU
  • Publication number: 20220114789
    Abstract: A virtual and real image fusion method is disclosed. The method comprises the following operations: obtaining a picture of a three dimensional space by a first camera, in which the picture comprises a screen picture and a tag picture of an entity tag and the screen picture is projected on the entity tag; obtaining a corresponding point data of the entity tag on the screen picture according to the picture by a processor; obtaining a spatial correction parameter according to the corresponding point data by the processor; and displaying an image on the screen picture according to the spatial correction parameter by the processor.
    Type: Application
    Filed: January 13, 2021
    Publication date: April 14, 2022
    Inventors: Li-Ting CHEN, Ming-Fang WENG
  • Publication number: 20220062502
    Abstract: Tissue compositions and methods of preparation thereof are provided. The tissue compositions can be used to treat or regenerate muscle tissue. The compositions can be configured to provide increased strength compared to other muscle matrices.
    Type: Application
    Filed: September 6, 2021
    Publication date: March 3, 2022
    Inventors: Li Ting Huang, Eric Stec, Nathaniel Bachrach, Hui Xu
  • Patent number: 11264282
    Abstract: Processes to form differently-pitched gate structures are provided. An example method includes providing a workpiece having a substrate and semiconductor fins spaced apart from one another by an isolation feature, depositing a gate material layer over the workpiece, forming a patterned hard mask over the gate material layer, the patterned hard mask including differently-pitched elongated features, performing a first etch process using the patterned hard mask as an etch mask through the gate material layer to form a trench, performing a second etch process using the patterned hard mask as an etch mask to extend the trench to a top surface of the isolation feature, and performing a third etch process using the patterned hard mask to extend the trench into the isolation feature. The first etch process includes use of carbon tetrafluoride and is free of use of oxygen gas.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: March 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Sheng Lai, Wei-Chung Sun, Li-Ting Chen, Kuei-Yu Kao, Chih-Han Lin
  • Patent number: 11257952
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Patent number: 11227788
    Abstract: According to an exemplary embodiment, a method of forming an isolation layer is provided. The method includes the following operations: providing a substrate; providing a vertical structure having a first layer over the substrate; providing a first interlayer dielectric over the first layer; performing CMP on the first interlayer dielectric; and etching back the first interlayer dielectric and the first layer to form the isolation layer corresponding to a source of the vertical structure.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Teng-Chun Tsai, Bing-Hung Chen, Chien-Hsun Wang, Cheng-Tung Lin, Chih-Tang Peng, De-Fang Chen, Huan-Just Lin, Li-Ting Wang, Yung-Cheng Lu
  • Patent number: 11227918
    Abstract: A method includes forming a gate stack on a first portion of a semiconductor substrate, removing a second portion of the semiconductor substrate on a side of the gate stack to form a recess, growing a semiconductor region starting from the recess, implanting the semiconductor region with an impurity, and performing a melt anneal on the semiconductor region. At least a portion of the semiconductor region is molten during the melt anneal.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: January 18, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Wen-Yen Chen, Li-Heng Chen, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Ying-Lang Wang
  • Publication number: 20210359095
    Abstract: A semiconductor structure includes a semiconductor substrate; fin active regions protruded above the semiconductor substrate; and a gate stack disposed the fin active regions; wherein the gate stack includes a high-k dielectric material layer, and various metal layers disposed on the high-k dielectric material layer. The gate stack has an uneven profile in a sectional view with a first dimension D1 at a top surface, a second dimension D2 at a bottom surface, and a third dimension D3 at a location between the top surface and the bottom surface, and wherein each of D1 and D2 is greater than D3.
    Type: Application
    Filed: April 2, 2021
    Publication date: November 18, 2021
    Inventors: Chi-Sheng Lai, Yu-Fan Peng, Li-Ting Chen, Yu-Shan Lu, Yu-Bey Wu, Wei-Chung Sun, Yuan-Ching Peng, Kuei-Yu Kao, Shih-Yao Lin, Chih-Han Lin, Pei-Yi Liu, Jing Yi Yan
  • Publication number: 20210327749
    Abstract: A method includes forming a first protruding fin and a second protruding fin over a base structure, with a trench located between the first protruding fin and the second protruding fin, depositing a trench-filling material extending into the trench, and performing a laser reflow process on the trench-filling material. In the reflow process, the trench-filling material has a temperature higher than a first melting point of the trench-filling material, and lower than a second melting point of the first protruding fin and the second protruding fin. After the laser reflow process, the trench-filling material is solidified. The method further includes patterning the trench-filling material, with a remaining portion of the trench-filling material forming a part of a gate stack, and forming a source/drain region on a side of the gate stack.
    Type: Application
    Filed: July 27, 2020
    Publication date: October 21, 2021
    Inventors: Wen-Yen Chen, Li-Ting Wang, Wan-Chen Hsieh, Bo-Cyuan Lu, Tai-Chun Huang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11113391
    Abstract: A method for preventing malicious software from attacking files of a computer system includes the following steps. Whether a file type of a specific file corresponding to an input/output (I/O) request is a to-be-backed-up file type is checked, wherein the to-be-backed-up file type belongs to one of multiple predetermined file types susceptible to malicious software attack. When the file type of the specific file is the to-be-backed-up file type, a backup already tag in a file context tag structure of the specific file is checked. When the backup already tag shows that the specific file has not been backed up, a backup process is performed for the specific file.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: September 7, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Lap Chung Lam, Pan-Jo Chuang, Li-Ting Huang, Tzy-Shiah Wang, Chuan-Yu Cho, Tzi-Cker Chiueh
  • Patent number: 11110201
    Abstract: Tissue compositions and methods of preparation thereof are provided. The tissue compositions can be used to treat or regenerate muscle tissue. The compositions can be configured to provide increased strength compared to other muscle matrices.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: September 7, 2021
    Assignee: LifeCell Corporation
    Inventors: Li Ting Huang, Eric Stec, Nathaniel Bachrach, Hui Xu
  • Publication number: 20210265219
    Abstract: Processes to form differently-pitched gate structures are provided. An example method includes providing a workpiece having a substrate and semiconductor fins spaced apart from one another by an isolation feature, depositing a gate material layer over the workpiece, forming a patterned hard mask over the gate material layer, the patterned hard mask including differently-pitched elongated features, performing a first etch process using the patterned hard mask as an etch mask through the gate material layer to form a trench, performing a second etch process using the patterned hard mask as an etch mask to extend the trench to a top surface of the isolation feature, and performing a third etch process using the patterned hard mask to extend the trench into the isolation feature. The first etch process includes use of carbon tetrafluoride and is free of use of oxygen gas.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 26, 2021
    Inventors: Chi-Sheng Lai, Wei-Chung Sun, Li-Ting Chen, Kuei-Yu Kao, Chih-Han Lin
  • Patent number: 11101179
    Abstract: A semiconductor structure includes a semiconductor substrate, a gate stack disposed over the semiconductor substrate, a first oxide spacer disposed along a sidewall of the gate stack, a protection portion disposed over the first oxide spacer, and an interlayer dielectric layer disposed over the semiconductor substrate. The first oxide spacer and the protection portion are disposed between the gate stack and the interlayer dielectric layer.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: August 24, 2021
    Assignee: WINBOND ELECTRONICS CORP.
    Inventors: Kai Jen, Li-Ting Wang, Yi-Hao Chien
  • Publication number: 20210257255
    Abstract: A method includes forming a gate stack over a first semiconductor region, removing a second portion of the first semiconductor region on a side of the gate stack to form a recess, growing a second semiconductor region starting from the recess, implanting the second semiconductor region with an impurity, and performing a melting laser anneal on the second semiconductor region. A first portion of the second semiconductor region is molten during the melting laser anneal, and a second and a third portion of the second semiconductor region on opposite sides of the first portion are un-molten.
    Type: Application
    Filed: April 12, 2021
    Publication date: August 19, 2021
    Inventors: Su-Hao Liu, Wen-Yen Chen, Tz-Shian Chen, Cheng-Jung Sung, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang
  • Publication number: 20210257359
    Abstract: A device includes a plurality of fin structures that each protrude vertically upwards out of a substrate and each extend in a first direction in a top view. A gate structure is disposed over the fin structures. The gate structure extends in a second direction in the top view. The second direction is different from the first direction. The fin structures have a fin pitch equal to a sum of: a dimension of one of the fin structures in the second direction and a distance between an adjacent pair of the fin structures in the second direction. An end segment of the gate structure extends beyond an edge of a closest one of the fin structures in the second direction. The end segment has a tapered profile in the top view or is at least 4 times as long as the fin pitch in the second direction.
    Type: Application
    Filed: June 11, 2020
    Publication date: August 19, 2021
    Inventors: Chi-Sheng Lai, Wei-Chung Sun, Li-Ting Chen, Kuei-Yu Kao, Chih-Han Lin
  • Publication number: 20210257310
    Abstract: An alignment structure for a semiconductor device and a method of forming same are provided. A method includes forming an isolation region over a substrate and forming an alignment structure over the isolation region. Forming the alignment structure includes forming a sacrificial gate electrode layer over the substrate and the isolation region. The sacrificial gate electrode layer is patterned to form a plurality of first sacrificial gates over the isolation region. At least one of the plurality of first sacrificial gates is reshaped. The at least one of the plurality of first sacrificial gates is disposed at an edge of the alignment structure in a plan view. A sidewall of the at least one of the plurality of first sacrificial gates comprises a notch at an interface between the at least one of the plurality of first sacrificial gates and the isolation region.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 19, 2021
    Inventors: Chi-Sheng Lai, Wei-Chung Sun, Li-Ting Chen, Kuei-Yu Kao, Chih-Han Lin
  • Patent number: 11087808
    Abstract: Provided is a word-line structure including a substrate, a word line, and an epitaxial pattern. The word line is embedded in the substrate. The word line includes a conductive layer, a barrier layer, an insulating layer, and a gate dielectric layer. The barrier wraps a lower portion of the conductive layer. The insulating layer wraps an upper portion of the conductive layer. The gate dielectric layer surrounds the insulating layer and the barrier layer to electrically isolate the barrier layer from the substrate. The epitaxial pattern is disposed between the insulating layer and the substrate and in contact with the substrate. A memory device including the word-line structure and a method of manufacturing the same are also provided.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 10, 2021
    Assignee: Winbond Electronics Corp.
    Inventors: Li-Ting Wang, Ming-Chung Chiang