Patents by Inventor Lianjun An

Lianjun An has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9784787
    Abstract: An electric field sensor includes sense and reference cells. The sense cell produces a resistance that varies relative to an intensity of an electric field, and the reference cell produces a resistance that is invariable relative to the intensity of the electric field. An output signal indicative of the intensity of the electric field is determined using the difference between the resistances. A system includes an electric field source that outputs a digital test program as an electric field signal. The system further includes the electric field sensor formed with IC dies on a wafer. The electric field sensor receives the electric field signal. The received electric field signal is converted to the test program, and the test program is stored in memory on the wafer. The electric field source does not physically contact the dies, but can flood an entire surface of the wafer with the electric field signal.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 10, 2017
    Assignee: NXP USA, Inc.
    Inventors: Lianjun Liu, Philippe Bernard Roland Lance, David Joseph Monk, Babak A Taheri
  • Publication number: 20170276738
    Abstract: A magnetic field sensor for sensing an external magnetic field along a sensing direction comprises a sensor bridge. The sensor bridge has a first sensor leg that includes a first magnetoresistive sense element and a second sensor leg that includes a second magnetoresistive sense element. The first and second sense elements have respective a first and second pinned layers having corresponding first and second reference magnetizations. The second reference magnetization is oriented in an opposing direction relative to the first reference magnetization. The first and second sense elements have respective first and second sense layers, each having an indeterminate magnetization state. A permanent magnet layer is proximate the magnetoresistive sense elements. In the absence of an external magnetic field, the permanent magnet layer magnetically biases the indeterminate magnetization state of each sense layer in an in-plane orientation to produce a sense magnetization of the first and second sense layers.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 28, 2017
    Inventors: Paige M. Holm, Lianjun Lu
  • Patent number: 9766301
    Abstract: A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: September 19, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Lianjun Liu, Phillip Mather, Jon Slaughter
  • Patent number: 9739842
    Abstract: A magnetic field sensor comprises a sensor bridge having multiple sensor legs. Each sensor leg includes magnetoresistive sense elements, each comprising a pinned layer having a reference magnetization parallel to a plane of the sensor and a sense layer having a sense magnetization that is skewed away from three orthogonal axes. The sense magnetization of a portion of the sense elements is oriented in a first direction and the sense magnetization of a different portion of the sense elements is magnetically biased in a second direction by a permanent magnet layer. The second direction differs from the first direction by an opposing angular magnitude to yield a balanced sensor bridge that produces a zero-offset outcome in the absence of an external magnetic field.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: August 22, 2017
    Assignee: NXP USA, Inc.
    Inventors: Paige M. Holm, Lianjun Liu
  • Patent number: 9720051
    Abstract: A magnetic field sensor includes in-plane sense elements located in a plane of the magnetic field sensor and configured to detect a magnetic field oriented perpendicular to the plane. A current carrying structure is positioned proximate the magnetic field sensor and includes at least one coil surrounding the in-plane sense elements. An electric current is applied to the coil to create a self-test magnetic field to be sensed by the sense elements. The coil may be vertically displaced from the plane in which the sense elements are located and laterally displaced from an area occupied by the sense elements to produce both Z-axis magnetic field components and lateral magnetic field components of the self-test magnetic field. The sense elements are arranged within the coil and interconnected to cancel the lateral magnetic field components, while retaining the Z-axis magnetic field components to be used for self-test of the magnetic field sensor.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: August 1, 2017
    Assignee: NXP USA, Inc.
    Inventors: Paige M. Holm, Lianjun Liu
  • Publication number: 20170212175
    Abstract: A magnetic field sensor comprises a sensor bridge having multiple sensor legs. Each sensor leg includes magnetoresistive sense elements, each comprising a pinned layer having a reference magnetization parallel to a plane of the sensor and a sense layer having a sense magnetization. A permanent magnet layer spaced apart from the sense elements magnetically biases the sense magnetization into an out-of-plane direction that is non-perpendicular to the plane of the sensor. The sense magnetization of a portion of the sense elements is oriented in a first direction and the sense magnetization of a different portion of the sense elements is oriented in a second direction differing from the first direction to generate two unique bias field vectors of the sense layers which enables detection of the external magnetic field in a sensing direction that is perpendicular to the plane of the magnetic field sensor without inter-axis coupling of sensor response.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Paige M. Holm, Lianjun Liu
  • Publication number: 20170212189
    Abstract: A magnetic field sensor comprises a sensor bridge having multiple sensor legs. Each sensor leg includes magnetoresistive sense elements located in a plane of the magnetic field sensor. Each sense element comprises a pinned layer and a sense layer. The pinned layer has a reference magnetization oriented parallel to the plane and the sense layer has a sense magnetization oriented out-of-plane. A permanent magnet layer may be spaced apart from the sense elements which magnetically biases the sense magnetization of the sense layer into an out-of-plane direction that is non-perpendicular to the plane of the sensor. The sense magnetization is orientable from the out-of-plane direction toward the plane of the sensor in response to an external magnetic field. The permanent magnet layer enables detection of the external magnetic field in a sensing direction that is also perpendicular to the plane of the magnetic field sensor.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Paige M. Holm, Lianjun Liu
  • Publication number: 20170212176
    Abstract: A magnetic field sensor comprises a sensor bridge having multiple sensor legs. Each sensor leg includes magnetoresistive sense elements, each comprising a pinned layer having a reference magnetization parallel to a plane of the sensor and a sense layer having a sense magnetization that is skewed away from three orthogonal axes. The sense magnetization of a portion of the sense elements is oriented in a first direction and the sense magnetization of a different portion of the sense elements is magnetically biased in a second direction by a permanent magnet layer. The second direction differs from the first direction by an opposing angular magnitude to yield a balanced sensor bridge that produces a zero-offset outcome in the absence of an external magnetic field.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Paige M. Holm, Lianjun Liu
  • Patent number: 9674619
    Abstract: A micro-electro-mechanical system (MEMS) microphone and a forming method therefore. The MEMS microphone comprises: a first substrate, the first substrate is provided with a first bonding face, the first substrate comprises an MEMS microphone component and a first conductive bonding structure arranged on the first bonding face, a second substrate, the second substrate is provided with a second bonding face, the second bonding substrate comprises a circuit and a second conductive bonding structure arranged on the second bonding face; the first substrate and the second substrate are oppositely fitted together via the first conductive bonding structure and the second conductive bonding structure. Embodiments of the present invention have a simple packaging technique and a compact size; the MEMS microphone packaging structure formed has a great performance on signal-to-noise ratio, and a great anti-interference capability.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 6, 2017
    Assignee: MEMSEN ELECTRONICS INC
    Inventor: Lianjun Liu
  • Patent number: 9664755
    Abstract: A sensor package includes a magnetic field sensor, where the magnetic field sensor includes an in-plane sense element and a flux guide configured to direct a magnetic field oriented perpendicular to a plane of the magnetic field sensor into the plane. A current carrying structure is positioned proximate the flux guide and circuitry is coupled to the current carrying structure. The current carrying structure includes a continuous coil having multiple substantially parallel conductive segments connected by additional conductive segments oriented Perpendicular to the parallel conductive segments to form a continuous series of loops. The circuitry is configured to provide an electric current to the continuous coil such that the electric current flows through each of the parallel conductive segments, wherein the electric current generates a magnetic field, and the magnetic field is applied to the flux guide to recondition a magnetic polarization of the flux guide.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Paige M. Holm, Lianjun Liu
  • Publication number: 20170146679
    Abstract: Described are a test apparatus and a test method for the wetted perimeter of coal seam water injection. In the test apparatus, a columnar insulator is provided between an upper electrode and a lower electrode, circular insulating tapes are located at the outer edges of the upper electrode and the lower electrode, a circular reverse osmosis membrane is provided at the middle of the circular insulating tape, the upper electrode, lower electrode, circular insulating tapes and circular reverse osmosis membrane form an enclosed chamber which is filled with solid sodium chloride, and cotton yarns are packed among the upper resin backing plate, lower resin backing plate, circular insulating tapes and the inner walls of water permeable perforated pipes. The upper electrode is provided with an electrode lead which passes through the columnar insulator, the lower electrode and the lower resin backing plate and goes out from the tail connecting end.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Applicant: Shandong University of Science and Technology
    Inventors: Weimin CHENG, Zhen LIU, Gang WANG, Gang ZHOU, Lianjun CHEN, Wen NIE, Lin XIN, Yanbin YU, Guanhua Nl, He YANG
  • Patent number: 9650033
    Abstract: Disclosed are a hybrid power system of a vehicle and a control method therefor. The hybrid power system of a vehicle comprises: an engine; a dual-clutch automatic transmission comprising an ISG motor; a first power unit and a second power unit; a power battery, the power battery being connected to the ISG motor by the first power unit; a power battery manager, the power battery manager being connected to the power battery and used to test an SOC of the power battery; a rear wheel drive motor, the rear wheel drive motor being connected to the power battery by the second power unit, and the rear wheel drive motor being connected to a rear speed reducer of the vehicle; and a vehicle controller, the vehicle controller being connected to the power battery manager, and the vehicle controller controlling the vehicle to enter a corresponding operating mode according to the SOC and drive required torque WTD at a wheel of the vehicle.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: May 16, 2017
    Inventors: Weibin Yang, Junhong Zhang, Haibo Liang, Lianjun Lu, Wei Yan, Shan Lu, Xiao Ma, Guofei Li, Ruchuan Liang, Liye Liu, Yang Li
  • Patent number: 9633952
    Abstract: Provided is a substrate structure, including: a first substrate and a second substrate arranged correspondingly. A first surface of the first substrate faces a second surface of the second substrate, wherein the first surface is successively arranged with a conductor interconnection layer and a bonding layer, with the bonding layer connecting the first substrate and the conductor interconnection layer to the second substrate. The substrate structure and a method for manufacturing the same. The second substrate can serve as a support substrate and the first substrate as a substrate for directly manufacturing a device. However, the first substrate is formed by the growth of a crystal without the problem of thickness and stress thereof, thereby avoiding unnecessary stress and further improving the performance of the device formed in the first substrate.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: April 25, 2017
    Assignee: MEMSEN ELECTRONICS INC.
    Inventor: Lianjun Liu
  • Patent number: 9606144
    Abstract: A probe card and method are provided for testing magnetic sensors at the wafer level. The probe card has one or more probe tips having a first pair of solenoid coils in parallel configuration on first opposed sides of each probe tip to supply a magnetic field in a first (X) direction, a second pair of solenoid coils in parallel configuration on second opposed sides of each probe tip to supply a magnetic field in a second (Y) direction orthogonal to the first direction, and an optional third solenoid coil enclosing or inscribing the first and second pair to supply a magnetic field in a third direction (Z) orthogonal to both the first and second directions. The first pair, second pair, and third coil are each symmetrical with a point on the probe tip array, the point being aligned with and positioned close to a magnetic sensor during test.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: March 28, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Lianjun Liu, Phillip Mather
  • Patent number: 9607911
    Abstract: A system for programming integrated circuit (IC) dies formed on a wafer includes an optical transmitter that outputs a digital test program as an optical signal. At least one optical sensor (e.g., photodiode) is formed with the IC dies on the wafer. The optical sensor detects and receives the optical signal. A processor formed on the wafer converts the optical signal to the digital test program and the digital test program is stored in memory on the wafer in association with one of the IC dies. The optical transmitter does not physically contact the dies, but can flood an entire surface of the wafer with the optical signal so that all of the IC dies are concurrently programmed with the digital test program.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: March 28, 2017
    Assignee: NXP USA, Inc.
    Inventors: Lianjun Liu, Philippe Lance, David J. Monk, Babak A. Taheri
  • Publication number: 20170081174
    Abstract: In some embodiments a method of manufacturing a sensor system can comprise forming a first structure having a substrate layer and a first sensor that is positioned on a first side of the substrate layer, bonding a cap structure over the first sensor on the first side of the substrate layer, and depositing a first dielectric layer over the cap structure. After bonding the cap structure and depositing the first dielectric layer, a second sensor is fabricated on the first dielectric layer. The second sensor includes material that would be adversely affected at a temperature that is used to bond the cap structure to the first side of the substrate layer.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 23, 2017
    Inventors: LIANJUN LIU, DAVID J. MONK
  • Patent number: 9588211
    Abstract: A method and apparatus eliminate magnetic domain walls in a flux guide by applying, either simultaneously or sequentially, a current pulse along serially positioned reset lines to create a magnetic field along the flux guide, thereby removing the magnetic domain walls. By applying the current pulses in parallel and stepping through pairs of shorter reset lines segments via switches, less voltage is required.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: March 7, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Lianjun Liu, Phillip Mather
  • Publication number: 20160334472
    Abstract: A sensor package includes a magnetic field sensor and a corruption detection and reset subsystem. The magnetic field sensor has a magnetic sense element and a ferromagnetic structure characterized by a baseline magnetic state. The subsystem includes a detector element, a processor, and current carrying structure positioned in proximity to the ferromagnetic structure. Methodology performed by the subsystem entails detecting at the detector element an altered magnetic state of the ferromagnetic structure, where the altered magnetic state differs from the baseline magnetic state. Methodology further entails determining, at the processor, when a reset action is needed in response to the altered magnetic state and applying a reset magnetic field to the ferromagnetic structure to reset the ferromagnetic structure from the altered magnetic state to the baseline magnetic state.
    Type: Application
    Filed: May 12, 2015
    Publication date: November 17, 2016
    Inventors: PAIGE M. HOLM, Lianjun Liu
  • Publication number: 20160306007
    Abstract: An electric field sensor includes sense and reference cells. The sense cell produces a resistance that varies relative to an intensity of an electric field, and the reference cell produces a resistance that is invariable relative to the intensity of the electric field. An output signal indicative of the intensity of the electric field is determined using the difference between the resistances. A system includes an electric field source that outputs a digital test program as an electric field signal. The system further includes the electric field sensor formed with IC dies on a wafer. The electric field sensor receives the electric field signal. The received electric field signal is converted to the test program, and the test program is stored in memory on the wafer. The electric field source does not physically contact the dies, but can flood an entire surface of the wafer with the electric field signal.
    Type: Application
    Filed: September 10, 2015
    Publication date: October 20, 2016
    Inventors: LIANJUN LIU, PHILIPPE BERNARD ROLAND LANCE, DAVID JOSEPH MONK, BABAK A. TAHERI
  • Patent number: 9469523
    Abstract: Methods for the fabrication of a Microelectromechanical Systems (“MEMS”) devices are provided, as are MEMS devices. In one embodiment, the MEMS device fabrication method includes forming at least one via opening extending into a substrate wafer, depositing a body of electrically-conductive material over the substrate wafer and into the via opening to produce a via, bonding the substrate wafer to a transducer wafer having an electrically-conductive transducer layer, and forming an electrical connection between the via and the electrically-conductive transducer layer. The substrate wafer is thinned to reveal the via through a bottom surface of the substrate wafer, and a backside conductor is produced over a bottom surface of the substrate wafer electrically coupled to the via.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 18, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventor: Lianjun Liu