Patents by Inventor Luigi Colombo

Luigi Colombo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004680
    Abstract: A packaged electronic device includes an integrated circuit and an electrically non-conductive encapsulation material in contact with the integrated circuit. A thermal conduit extends from an exterior of the package, through the encapsulation material, to the integrated circuit. The thermal conduit has a thermal conductivity higher than the encapsulation material contacting the thermal conduit. The thermal conduit includes a cohered nanoparticle film. The cohered nanoparticle film is formed by a method which includes an additive process.
    Type: Grant
    Filed: November 26, 2016
    Date of Patent: May 11, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Archana Venugopal, Benjamin Stassen Cook, Luigi Colombo, Robert Reid Doering
  • Publication number: 20210118762
    Abstract: An integrated circuit has a substrate that includes a semiconductor material, and an interconnect region disposed on the substrate. The integrated circuit includes a thermal routing trench in the substrate. The thermal routing trench includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal routing trench has a thermal conductivity higher than the semiconductor material contacting the thermal routing trench. The cohered nanoparticle film is formed by an additive process.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 22, 2021
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Patent number: 10964778
    Abstract: In a described example, an integrated circuit includes a capacitor first plate; a dielectric stack over the capacitor first plate comprising silicon nitride and silicon dioxide with a capacitance quadratic voltage coefficient less than 0.5 ppm/V2; and a capacitor second plate over the dielectric stack.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: March 30, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Poornika Fernandes, Luigi Colombo, Haowen Bu
  • Patent number: 10923567
    Abstract: A method for forming a graphene FET includes providing a graphene layer having a surface. A first metal layer having a work function <4.3 eV is deposited on the graphene surface. The first metal layer is oxidized to form a first metal oxide layer. The first metal oxide layer is etched to provide open surface contact regions including a first and a second region of the graphene layer for providing a graphene surface source and drain contact. A second metal layer is deposited including a second metal layer portion providing a source with a source contact over the graphene surface source contact and a second metal layer portion providing a drain with a drain contact over the graphene surface drain contact. A grown-in graphitic interface layer is formed at an interface between the source contact and graphene surface source contact and the drain contact and graphene surface drain contact.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: February 16, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Luigi Colombo, Archana Venugopal
  • Patent number: 10861763
    Abstract: An integrated circuit has a substrate which includes a semiconductor material, and an interconnect region disposed on the substrate. The integrated circuit includes a thermal routing trench in the substrate. The thermal routing trench includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal routing trench has a thermal conductivity higher than the semiconductor material contacting the thermal routing trench. The cohered nanoparticle film is formed by an additive process.
    Type: Grant
    Filed: November 26, 2016
    Date of Patent: December 8, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Publication number: 20200381517
    Abstract: A switchable array includes: a microstructure of interconnected units formed of graphene tubes with open spaces in the microstructure bounded by the graphene tubes; at least one JFET gate in at least one of the graphene tubes; and a control line having an end connected to the at least one JFET gate. The control line extends to a periphery of the microstructure.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Benjamin Stassen Cook, Luigi Colombo, Nazila Dadvand, Archana Venugopal
  • Patent number: 10811334
    Abstract: An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region has a plurality of interconnect levels. The integrated circuit includes a thermal routing structure in the interconnect region. The thermal routing structure extends over a portion, but not all, of the integrated circuit in the interconnect region. The thermal routing structure includes a cohered nanoparticle film in which adjacent nanoparticles cohere to each other. The thermal routing structure has a thermal conductivity higher than dielectric material touching the thermal routing structure. The cohered nanoparticle film is formed by a method which includes an additive process.
    Type: Grant
    Filed: November 26, 2016
    Date of Patent: October 20, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Patent number: 10804201
    Abstract: A structure for a semiconductor device includes a dielectric layer and a metal layer. The structure also includes a plurality of unit cells. Each unit cell is formed of interconnected segments. The plurality of unit cells forms a lattice. The lattice is between the dielectric layer and the metal layer.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: October 13, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Benjamin Stassen Cook, Nazila Dadvand, Luigi Colombo
  • Patent number: 10790228
    Abstract: An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region includes a plurality of interconnect levels. Each interconnect level includes interconnects in dielectric material. The integrated circuit includes a graphitic via in the interconnect region. The graphitic via vertically connects a first interconnect in a first interconnect level to a second interconnect in a second, higher, interconnect level. The graphitic via includes a cohered nanoparticle film of nanoparticles in which adjacent nanoparticles cohere to each other, and a layer of graphitic material disposed on the cohered nanoparticle film. The nanoparticles include one or more metals suitable for catalysis of the graphitic material. The cohered nanoparticle film is formed by a method which includes an additive process. The graphitic via is electrically coupled to an active component of the integrated circuit.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: September 29, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Benjamin Stassen Cook, Luigi Colombo, Robert Reid Doering
  • Patent number: 10748999
    Abstract: A switchable array micro-lattice comprises a plurality of interconnected units wherein the units are formed of graphene tubes. JFET gates are provided in selected members of the micro-lattice. Gate connectors are routed from an external surface of an integrated circuit (IC) through openings in the micro-lattice to permit control of the JFET gates.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 18, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Luigi Colombo, Nazila Dadvand, Archana Venugopal
  • Publication number: 20200219969
    Abstract: In a described example, a method for forming a capacitor includes: forming a capacitor first plate over a non-conductive substrate; flowing ammonia and nitrogen gas into a plasma enhanced chemical vapor deposition (PECVD) chamber containing the non-conductive substrate; stabilizing a pressure and a temperature in the PECVD chamber; turning on radio frequency high frequency (RF-HF) power to the PECVD chamber; pretreating the capacitor first plate for at least 60 seconds; depositing a capacitor dielectric on the capacitor first plate; and depositing a capacitor second plate on the capacitor dielectric.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Inventors: Poornika Fernandes, Luigi Colombo, Haowen Bu
  • Publication number: 20200211849
    Abstract: A method, e.g. of forming an electronic device, includes forming a carbon-doped metal layer over a substrate. The carbon-doped metal layer is heated and cooled such that a first graphene layer is formed on a top surface of the carbon-doped metal layer, and a second graphene layer is formed between the carbon-doped metal layer and the substrate. A portion of the first graphene layer is removed and a portion of the carbon-doped metal layer is removed, thereby forming first and second spaced-apart contact layers on the second graphene layer.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 2, 2020
    Inventors: Luigi Colombo, Archana Venugopal
  • Publication number: 20200203483
    Abstract: A switchable array micro-lattice comprises a plurality of interconnected units wherein the units are formed of graphene tubes. JFET gates are provided in selected members of the micro-lattice. Gate connectors are routed from an external surface of an integrated circuit (IC) through openings in the micro-lattice to permit control of the JFET gates.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Benjamin Stassen COOK, Luigi COLOMBO, Nazila DADVAND, Archana VENUGOPAL
  • Publication number: 20200185498
    Abstract: A method for forming a graphene FET includes providing a graphene layer having a surface. A first metal layer having a work function <4.3 eV is deposited on the graphene surface. The first metal layer is oxidized to form a first metal oxide layer. The first metal oxide layer is etched to provide open surface contact regions including a first and a second region of the graphene layer for providing a graphene surface source and drain contact. A second metal layer is deposited including a second metal layer portion providing a source with a source contact over the graphene surface source contact and a second metal layer portion providing a drain with a drain contact over the graphene surface drain contact. A grown-in graphitic interface layer is formed at an interface between the source contact and graphene surface source contact and the drain contact and graphene surface drain contact.
    Type: Application
    Filed: February 17, 2020
    Publication date: June 11, 2020
    Inventors: LUIGI COLOMBO, ARCHANA VENUGOPAL
  • Patent number: 10644098
    Abstract: In a described example, a method for forming a capacitor includes: forming a capacitor first plate over a non-conductive substrate; flowing ammonia and nitrogen gas into a plasma enhanced chemical vapor deposition (PECVD) chamber containing the non-conductive substrate; stabilizing a pressure and a temperature in the PECVD chamber; turning on radio frequency high frequency (RF-HF) power to the PECVD chamber; pretreating the capacitor first plate for at least 60 seconds; depositing a capacitor dielectric on the capacitor first plate; and depositing a capacitor second plate on the capacitor dielectric.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: May 5, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Poornika Fernandes, Luigi Colombo, Haowen Bu
  • Patent number: 10593763
    Abstract: A method for forming a graphene FET includes providing a graphene layer having a surface. A first metal layer having a work function <4.3 eV is deposited on the graphene surface. The first metal layer is oxidized to form a first metal oxide layer. The first metal oxide layer is etched to provide open surface contact regions including a first and a second region of the graphene layer for providing a graphene surface source and drain contact. A second metal layer is deposited including a second metal layer portion providing a source with a source contact over the graphene surface source contact and a second metal layer portion providing a drain with a drain contact over the graphene surface drain contact. A grown-in graphitic interface layer is formed at an interface between the source contact and graphene surface source contact and the drain contact and graphene surface drain contact.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: March 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Luigi Colombo, Archana Venugopal
  • Publication number: 20200075779
    Abstract: A microelectronic device includes a gated graphene component. The gated graphene component has a graphitic layer containing one or more layers of graphene. The graphitic layer has a channel region, a first contact region adjacent to the channel region and a second contact region adjacent to the channel region. A patterned hexagonal boron nitride (hBN) layer is disposed on the graphitic layer above the channel region. A gate is located over the patterned hBN layer above the channel region. A first connection is disposed on the graphitic layer in the first contact region, and a second connection is disposed on the graphitic layer in the second contact region. The patterned hBN layer does not extend completely under the first connection or under the second connection. A method of forming the gated graphene component in the microelectronic device is disclosed.
    Type: Application
    Filed: October 23, 2019
    Publication date: March 5, 2020
    Inventors: Archana Venugopal, Luigi Colombo
  • Patent number: 10529641
    Abstract: An integrated circuit has a thermal routing structure above a top interconnect level. The top interconnect level includes interconnects connected to lower interconnect levels, and does not include bond pads, probe pads, input/output pads, or a redistribution layer to bump bond pads. The thermal routing structure extends over a portion, but not all, of a plane of the integrated circuit containing the top interconnect level. The thermal routing structure includes a layer of nanoparticles in which adjacent nanoparticles are attached to each other. The layer of nanoparticles is free of an organic binder material. The thermal routing structure has a thermal conductivity higher than the metal in the top interconnect level. The layer of nanoparticles is formed by an additive process.
    Type: Grant
    Filed: November 26, 2016
    Date of Patent: January 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Benjamin Stassen Cook, Luigi Colombo, Robert Reid Doering
  • Publication number: 20200006471
    Abstract: An integrated circuit (IC) including a semiconductor surface layer of a substrate including functional circuitry having circuit elements formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal capacitor (MIM) capacitor on the semiconductor surface layer for realizing at least one circuit function. The MIM capacitor includes a multilevel bottom capacitor plate having an upper top surface, a lower top surface, and sidewall surfaces that connect the upper and lower top surfaces (e.g., a bottom plate layer on a three-dimensional (3D) layer or the bottom capacitor plate being a 3D bottom capacitor plate). At least one capacitor dielectric layer is on the bottom capacitor plate. A top capacitor plate is on the capacitor dielectric layer, and there are contacts through a pre-metal dielectric layer to contact the top capacitor plate and the bottom capacitor plate.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Inventors: POORNIKA FERNANDES, SAGNIK DEY, LUIGI COLOMBO, HAOWEN BU, SCOTT ROBERT SUMMERFELT, MARK ROBERT VISOKAY, JOHN PAUL CAMPBELL
  • Patent number: 10490673
    Abstract: A microelectronic device includes a gated graphene component. The gated graphene component has a graphitic layer containing one or more layers of graphene. The graphitic layer has a channel region, a first contact region adjacent to the channel region and a second contact region adjacent to the channel region. A patterned hexagonal boron nitride (hBN) layer is disposed on the graphitic layer above the channel region. A gate is located over the patterned hBN layer above the channel region. A first connection is disposed on the graphitic layer in the first contact region, and a second connection is disposed on the graphitic layer in the second contact region. The patterned hBN layer does not extend completely under the first connection or under the second connection. A method of forming the gated graphene component in the microelectronic device is disclosed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 26, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Luigi Colombo