Patents by Inventor Mark B. Johnson

Mark B. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6809959
    Abstract: A new nonvolatile hybrid memory cell is provided. The cell is comprised of a magnetic spin storage element and one or two semiconductor FET isolation elements. The magnetic spin storage element is an electron spin-based memory element situated on a silicon based substrate and includes a first ferromagnetic layer with a changeable magnetization state, a second ferromagnetic layer with a non-changeable magnetization state, a base layer situated between said first ferromagnetic layer and said second ferromagnetic layer, and a low transmission barrier. The low transmission barrier can be used to adjust a relative base resistance/transimpedance relationship, and thus configure an offset of the device to give a range of outputs ranging from bipolar to unipolar.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: October 26, 2004
    Inventor: Mark B. Johnson
  • Patent number: 6807090
    Abstract: A method of making a nonvolatile hybrid memory cell is provided. The cell is formed from of a magnetic spin storage element and one or two semiconductor FET isolation elements. The magnetic spin storage element is an electron spin-based memory element situated on a silicon based substrate and includes a first ferromagnetic layer with a changeable magnetization state, a second ferromagnetic layer with a non-changeable magnetization state, and a base layer situated between said first ferromagnetic layer and said second ferromagnetic layer. The base layer is a material having electron levels that are not significantly affected by an electron spin, and can include aluminum.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: October 19, 2004
    Inventor: Mark B. Johnson
  • Patent number: 6804146
    Abstract: A new nonvolatile hybrid memory cell is provided. The cell is comprised of a magnetic spin storage element and one or two semiconductor FET isolation elements. The magnetic spin storage element is an electron spin-based memory element situated on a silicon based substrate and includes a first ferromagnetic layer with a changeable magnetization state, a second ferromagnetic layer with a non-changeable magnetization state, and a base layer situated between said first ferromagnetic layer and said second ferromagnetic layer. The base layer is a material having electron levels that are not significantly affected by an electron spin.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: October 12, 2004
    Inventor: Mark B. Johnson
  • Patent number: 6800913
    Abstract: A modified hybrid Hall effect device is provided which is the combination of a conventional Hall effect device and a second Hall effect device having a Hall plate coupled to a ferromagnetic layer. The hybrid Hall effect device can be used to determine the independent magnetic field vector components comprising a vector magnetic field, such as for determining the {circumflex over (x)} and the {circumflex over (z)} components of a magnetic field, or for measuring the total magnitude of a vector magnetic field of any orientation. The modified Hall Effect device can be adapted for use as a magnetic field sensor for the detection of macroscopic objects that have associated magnetic fields, or for microscopic objects that have been tagged by microscopic magnetic particles.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: October 5, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark B. Johnson, Michael Miller, Brian Bennett
  • Publication number: 20040160821
    Abstract: A new nonvolatile hybrid memory cell is provided. The cell is comprised of a magnetic spin storage element and one or two semiconductor FET isolation elements. The magnetic spin storage element is an electron spin-based memory element situated on a silicon based substrate and includes a first ferromagnetic layer with a changeable magnetization state, a second ferromagnetic layer with a non-changeable magnetization state, and a base layer situated between said first ferromagnetic layer and said second ferromagnetic layer. The base layer is a material having electron levels that are not significantly affected by an electron spin.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 19, 2004
    Inventor: Mark B. Johnson
  • Publication number: 20040160814
    Abstract: A new nonvolatile hybrid memory cell is provided. The cell is comprised of a magnetic spin storage element and one or two semiconductor FET isolation elements. The magnetic spin storage element is an electron spin-based memory element situated on a silicon based substrate and includes a first ferromagnetic layer with a changeable magnetization state, a second ferromagnetic layer with a non-changeable magnetization state, a base layer situated between said first ferromagnetic layer and said second ferromagnetic layer, and a low transmission barrier. The low transmission barrier can be used to adjust a relative base resistance/transimpedance relationship, and thus configure an offset of the device to give a range of outputs ranging from bipolar to unipolar.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 19, 2004
    Inventor: Mark B. Johnson
  • Publication number: 20040160800
    Abstract: A new nonvolatile hybrid memory cell stacked architecture is provided. The cells are comprised of magnetic spin storage elements stacked on top of each other on a silicon substrate, as well as one or two semiconductor FET isolation elements.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 19, 2004
    Inventor: Mark B. Johnson
  • Publication number: 20040160796
    Abstract: A method of making a nonvolatile hybrid memory cell is provided. The cell is formed from of a magnetic spin storage element and one or two semiconductor FET isolation elements. The magnetic spin storage element is an electron spin-based memory element situated on a silicon based substrate and includes a first ferromagnetic layer with a changeable magnetization state, a second ferromagnetic layer with a non-changeable magnetization state, and a base layer situated between said first ferromagnetic layer and said second ferromagnetic layer. The base layer is a material having electron levels that are not significantly affected by an electron spin, and can include aluminum.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 19, 2004
    Inventor: Mark B. Johnson
  • Patent number: 6741494
    Abstract: A hybrid memory device combines a ferromagnetic layer and a Hall Effect device. The ferromagnetic layer is magnetically coupled to a portion of a Hall plate, and when such plate is appropriately biased, a Hall Effect signal can be generated whose value is directly related to the magnetization state of the ferromagnetic layer. The magnetization state of the ferromagnetic layer can be set to correspond to different values of a data item to be stored in the hybrid memory device. The magnetization state is non-volatile, and a write circuit can be coupled to the ferromagnetic layer to reset or change the magnetization state to a different value. The write circuit uses a pair of inductively coupled write wires in each row and column, which are each given a signal with an amplitude approximately ½ of that required to change the state of the ferromagnetic layer.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: May 25, 2004
    Inventor: Mark B. Johnson
  • Publication number: 20040085065
    Abstract: A modified hybrid Hall effect device is provided which is the combination of a conventional Hall effect device and a second Hall effect device having a Hall plate coupled to a ferromagnetic layer. The hybrid Hall effect device can be used to determine the independent magnetic field vector components comprising a vector magnetic field, such as for determining the {circumflex over (x)} and the {circumflex over (z)} components of a magnetic field, or for measuring the total magnitude of a vector magnetic field of any orientation. The modified Hall Effect device can be adapted for use as a magnetic field sensor for the detection of macroscopic objects that have associated magnetic fields, or for microscopic objects that have been tagged by microscopic magnetic particles.
    Type: Application
    Filed: November 4, 2002
    Publication date: May 6, 2004
    Inventors: Mark B. Johnson, Michael Miller, Brian Bennett
  • Publication number: 20040018644
    Abstract: Magnetic field sensors, each generating an electrical output signal in proportion to the local magnetic field, are lithographically fabricated on a semiconductor substrate with a small spatial separation. The lateral dimension of the sensors and the separation length are the order of the minimum lithographic feature size. Comparing the electrical signals of the sensors results in a measurement of the local magnetic field gradient. Large field gradients, that vary on a small spatial scale, may be associated small magnetic structures such as microscopic magnetic particles. Detection of a field gradient can be used to infer the presence of a magnetic particle.
    Type: Application
    Filed: July 29, 2002
    Publication date: January 29, 2004
    Inventors: Mark B. Johnson, Michael Miller
  • Patent number: 6683359
    Abstract: A Hall effect device comprising: (a) an electrically-conductive layer or plate having a top surface: and (b) a ferromagnetic multilayer, where the conductive film or layer is composed of high mobility semiconductors. Also, a Hall effect device can be a device in which the Hall plate comprises an indium compound, germanium or mixtures thereof. The devices are useful for a variety of applications such as a memory element in a nonvolatile random access memory array (NRAM) and as a logic gate.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: January 27, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark B. Johnson, Gary A. Prinz
  • Patent number: 6677877
    Abstract: An analog-to-digital converter for converting an analog input signal to a digital output signal is described. The ADC includes a comparator circuit having first to nth stages of comparators responsive to the analog input signal. Each comparator includes a plurality of magnetoelectronic devices for performing comparison function. Each magnetoelectronic device has one or more ferromagnetic elements capable of being switched into a first or second magnetization states. The amplitude of analog input signal upon exceeding a predetermined threshold level (IS or VS) of a respective magnetoelectronic device sets a magnetization state of the respective magnetoelectronic device to the first state and the resulting output of the respective magnetoelectronic device to a HIGH state, and vice-versa. In one embodiment, the magnetoelectronic device is a Hybrid Hall Effect device. In another embodiment, the magnetoelectronic device is an isolator.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: January 13, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark B. Johnson, Bill Stapor
  • Publication number: 20030234429
    Abstract: A Hall effect device comprising: (a) an electrically-conductive layer or plate having a top surface; and (b) a ferromagnetic multilayer, where the conductive film or layer is composed of high mobility semiconductors. Also, a Hall effect device can be a device in which the Hall plate comprises an indium compound, germanium or mixtures thereof. The devices are useful for a variety of applications such as a memory element in a nonvolatile random access memory array (NRAM) and as a logic gate.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 25, 2003
    Inventors: Mark B. Johnson, Gary A. Prinz
  • Patent number: 6646315
    Abstract: A Hall effect device comprising: (a) an electrically-conductive layer or plate having a top surface; and (b) a ferromagnetic layer, where the conductive film or layer is composed of high mobility semiconductors. Also, a Hall effect device can have a ferromagnetic element that is a multilayer (e.g., a bilayer), and a device in which the Hall plate comprises an indium compound, germanium or mixtures thereof. The devices are useful for a variety of applications such as a memory element in a nonvolatile random access memory array (NRAM) and as a logic gate.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: November 11, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark B. Johnson, Gary A. Prinz
  • Publication number: 20030197235
    Abstract: A Hall effect device comprising: (a) an electrically-conductive layer or plate having a top surface; and (b) a ferromagnetic layer, where the conductive film or layer is composed of high mobility semiconductors. Also, a Hall effect device can have a ferromagnetic element that is a multilayer (e.g., a bilayer), and a device in which the Hall plate comprises an indium compound, germanium or mixtures thereof. The devices are useful for a variety of applications such as a memory element in a nonvolatile random access memory array (NRAM) and as a logic gate.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 23, 2003
    Inventors: Mark B. Johnson, Gary A. Prinz
  • Publication number: 20030189234
    Abstract: A Hall effect device comprising: (a) an electrically-conductive layer or plate having a top surface; and (b) a ferromagnetic layer comprised of a magnetic insulator. Such magnetic insulator can be a ferrite or a perovskite ferromagnetic oxide. Also, a Hall effect device can have a ferromagnetic element that is a multilayer (e.g., a bilayer), and a device in which the Hall plate comprises an indium compound, germanium or mixtures thereof. The devices are useful for a variety of applications such as a memory element in a nonvolatile random access memory array (NRAM) and as a logic gate.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventors: Mark B. Johnson, Gary A. Prinz
  • Publication number: 20030184460
    Abstract: An analog-to-digital converter for converting an analog input signal to a digital output signal is described. The ADC includes a comparator circuit having first to nth stages of comparators responsive to the analog input signal. Each comparator includes a plurality of magnetoelectronic devices for performing comparison function. Each magnetoelectronic device has one or more ferromagnetic elements capable of being switched into a first or second magnetization states. The amplitude of analog input signal upon exceeding a predetermined threshold level (Is or Vs) of a respective magnetoelectronic device sets a magnetization state of the respective magnetoelectronic device to the first state and the resulting output of the respective magnetoelectronic device to a HIGH state, and vice-versa. In one embodiment, the magnetoelectronic device is a Hybrid Hall Effect device. In another embodiment, the magnetoelectronic device is an isolator.
    Type: Application
    Filed: March 29, 2002
    Publication date: October 2, 2003
    Inventors: Mark B. Johnson, Bill Stapor
  • Patent number: 6423553
    Abstract: A hybrid memory device combines a ferromagnetic layer and a Hall Effect device. The ferromagnetic layer is magnetically coupled to a portion of a Hall plate, and when such plate is appropriately biased, a Hall Effect signal can be generated whose value is directly related to the magnetization state of the ferromagnetic layer. The magnetization state of the ferromagnetic layer can be set to correspond to different values of a data item to be stored in the hybrid memory device. The magnetization state is non-volatile, and a write circuit can be coupled to the ferromagnetic layer to reset or change the magnetization state to a different value. The memory device can also be fabricated to include an associated transistor (or other suitable switch) that functions as an isolation element to reduce cross-talk and as a selector for the output of the device when such is used in a memory array.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: July 23, 2002
    Inventor: Mark B. Johnson
  • Publication number: 20020093068
    Abstract: A hybrid memory device combines a ferromagnetic layer and a Hall Effect device. The ferromagnetic layer is magnetically coupled to a portion of a Hall plate, and when such plate is appropriately biased, a Hall Effect signal can be generated whose value is directly related to the magnetization state of the ferromagnetic layer. The magnetization state of the ferromagnetic layer can be set to correspond to different values of a data item to be stored in the hybrid memory device. The magnetization state is non-volatile, and a write circuit can be coupled to the ferromagnetic layer to reset or change the magnetization state to a different value. The memory device can also be fabricated to include an associated transistor (or other suitable switch) that functions as an isolation element to reduce cross-talk and as a selector for the output of the device when such is used in a memory array.
    Type: Application
    Filed: March 18, 2002
    Publication date: July 18, 2002
    Inventor: Mark B. Johnson