Patents by Inventor Mark D. Jaffe

Mark D. Jaffe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10964840
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Patent number: 10896992
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Patent number: 10790190
    Abstract: A method for fabricating a backside contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer. The method includes forming a first switch and a second switch in the device layer. A trench that extends through the device layer and partially through the buried insulator layer is formed. An electrically-conducting connection is formed in the trench.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: September 29, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Steven M. Shank, Anthony K. Stamper
  • Patent number: 10712498
    Abstract: Methods and structures for shielding optical waveguides are provided. A method includes forming a first optical waveguide core and forming a second optical waveguide core adjacent to the first optical waveguide core. The method also includes forming an insulator layer over the first optical waveguide core and the second optical waveguide core. The method further includes forming a shielding structure in the insulator layer between the first optical waveguide core and the second optical waveguide core.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: July 14, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 10692753
    Abstract: A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark D. Jaffe, Alvin J. Joseph, Qizhi Liu, Anthony K. Stamper
  • Patent number: 10629482
    Abstract: A device structure is formed using a silicon-on-insulator substrate. The device structure includes a first switch and a second switch that are formed within a device layer of the silicon-on-insulator substrate and between a buried insulator layer of the silicon on-insulator substrate and a dielectric layer disposed above and coupled to the device layer. An electrically-conducting connection is located in a first trench extending from the device layer through the buried insulator layer to a trap-rich layer such that the electrically-conducting connection is coupled with a substrate.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Steven M. Shank, Anthony K. Stamper
  • Patent number: 10622506
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Patent number: 10615302
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Patent number: 10573554
    Abstract: A device structure with a backside contact includes a silicon-on-insulator substrate including a device layer, a buried insulator layer, and an electrically-conducting connection in a trench. A final substrate is connected to the buried insulator layer such that the electrically-conducting connection contacts the final substrate.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: February 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Steven M. Shank, Anthony K. Stamper
  • Patent number: 10566235
    Abstract: A method for fabricating a backside contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer. The method includes forming an electrically-conducting connection in a trench. The handle wafer is removed. After the handle wafer is removed, the buried insulator layer is partially removed to expose the electrically-conducting connection. After the buried insulator layer is partially removed, a final substrate is connected to the buried insulator layer such that the electrically-conducting connection contacts the final substrate.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: February 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Steven M. Shank, Anthony K. Stamper
  • Patent number: 10559743
    Abstract: A design structure for an integrated radio frequency (RF) filter on a backside of a semiconductor substrate includes: a device on a first side of a substrate; a radio frequency (RF) filter on a backside of the substrate; and at least one substrate conductor extending from the front side of the substrate to the backside of the substrate and electrically coupling the RF filter to the device.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 11, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Publication number: 20190386168
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Inventors: John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Mark D. JAFFE, Kirk D. PETERSON
  • Publication number: 20190355865
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 21, 2019
    Inventors: John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Mark D. JAFFE, Kirk D. PETERSON
  • Patent number: 10453987
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: October 22, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Patent number: 10424686
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: September 24, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Publication number: 20190267285
    Abstract: A method for fabricating a backside contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer. The method includes forming a first switch and a second switch in the device layer. A trench that extends through the device layer and partially through the buried insulator layer is formed. An electrically-conducting connection is formed in the trench.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 29, 2019
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Steven M. Shank, Anthony K. Stamper
  • Patent number: 10361123
    Abstract: A method for fabricating a backside contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer. The method includes forming a first switch and a second switch in the device layer. An electrically-conducting connection is formed in a trench. The handle wafer is removed. After the handle wafer is removed, the buried insulator layer is partially removed to expose the electrically-conducting connection. After the buried insulator layer is partially removed, a final substrate is connected to the buried insulator layer such that the electrically-conducting connection contacts the final substrate.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 23, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Steven M. Shank, Anthony K. Stamper
  • Publication number: 20190139819
    Abstract: A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Inventors: Mark D. JAFFE, Alvin J. JOSEPH, Qizhi LIU, Anthony K. STAMPER
  • Patent number: 10277188
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: April 30, 2019
    Assignee: SMARTSENS TECHNOLOGY (CAYMAN) CO., LTD.
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Publication number: 20190121022
    Abstract: Methods and structures for shielding optical waveguides are provided. A method includes forming a first optical waveguide core and forming a second optical waveguide core adjacent to the first optical waveguide core. The method also includes forming an insulator layer over the first optical waveguide core and the second optical waveguide core. The method further includes forming a shielding structure in the insulator layer between the first optical waveguide core and the second optical waveguide core.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Mark D. JAFFE, Kirk D. PETERSON, Jed H. RANKIN