Patents by Inventor Mark D. Jaffe

Mark D. Jaffe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080272399
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 6, 2008
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Patent number: 7439561
    Abstract: The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan, Mark D. Jaffe, Jeffrey B. Johnson, Alain Loiseau
  • Publication number: 20080150147
    Abstract: A bond pad for effecting through-wafer connections to an integrated circuit or electronic package and method of producing thereof. The bond pad includes a high surface area aluminum bond pad in order to resultingly obtain a highly reliable, low resistance connection between bond pad and electrical leads.
    Type: Application
    Filed: March 12, 2008
    Publication date: June 26, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Richard J. Rassel, Edmund J. Sprogis
  • Publication number: 20080128767
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, EASTMAN KODAK COMPANY
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Publication number: 20080116537
    Abstract: A CMOS image sensor array and method of fabrication. The CMOS imager sensor array comprises a substrate; an array of light receiving pixel structures formed above the substrate, the array having formed therein “m” levels of conductive structures, each level formed in a corresponding interlevel dielectric material layer; a dense logic wiring region formed adjacent to the array of light receiving pixel structures having “n” levels of conductive structures, each level formed in a corresponding interlevel dielectric material layer, where n>m. A microlens array having microlenses and color filters formed above the interlevel dielectric material layer, a microlens and respective color filter in alignment with a respective light receiving structure formed at a surface of the substrate. A top surface of the interlevel dielectric material layer beneath the microlens array is recessed from a top surface of the interlevel dielectric material layers of the dense logic wiring region.
    Type: Application
    Filed: November 17, 2006
    Publication date: May 22, 2008
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Zhong-Xiang He, Mark D. Jaffe, Robert K. Leidy, Stephen E. Luce, Richard J. Rassel, Edmund J. Sprogis
  • Publication number: 20080111159
    Abstract: An interconnect layout, an image sensor including the interconnect layout and a method for fabricating the image sensor each use a first electrically active physical interconnect layout pattern within an active pixel region and a second electrically active physical interconnect layout pattern spatially different than the first electrically active physical interconnect layout pattern within a dark pixel region. The second electrically active physical interconnect layout pattern includes at least one electrically active interconnect layer interposed between a light shield layer and a photosensor region aligned therebeneath, thus generally providing a higher wiring density. The higher wiring density within the second layout pattern provides that that the image sensor may be fabricated with enhanced manufacturing efficiency and a reduction of metallization levels.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Richard J. Rassel
  • Patent number: 7361581
    Abstract: A bond pad for effecting through-wafer connections to an integrated circuit or electronic package and method of producing thereof. The bond pad includes a high surface area aluminum bond pad in order to resultingly obtain a highly reliable, low resistance connection between bond pad and electrical leads.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Richard J. Rassel, Edmund J. Sprogis
  • Patent number: 7361989
    Abstract: An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: April 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Stephen E. Luce, Richard J. Rassel, Edmund J. Sprogis
  • Publication number: 20080088014
    Abstract: An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
    Type: Application
    Filed: September 26, 2006
    Publication date: April 17, 2008
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Stephen E. Luce, Richard J. Rassel, Edmund J. Sprogis
  • Patent number: 7342268
    Abstract: An image sensor and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack to result in a pixel array exhibiting increased light sensitivity. The image sensor includes structures having a minimum thickness of barrier layer metal that traverses the optical path of each pixel in the sensor array or, that have portions of barrier layer metal selectively removed from the optical paths of each pixel, thereby minimizing reflectance. That is, by implementing various block or single mask methodologies, portions of the barrier layer metal are completely removed at locations of the optical path for each pixel in the array. In a further embodiment, the barrier metal layer may be formed atop the Cu metallization by a self-aligned deposition.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Richard J. Rassel, Anthony K. Stamper
  • Publication number: 20080042292
    Abstract: An electronic packaging having at least one bond pad positioned on a chip for effectuating through-wafer connections to an integrated circuit. The electronic package is equipped with an edge seal between the bond pad region and an active circuit region, and includes a crack stop, which is adapted to protect the arrangement from the entry of deleterious moisture and combination into the active regions of the chip containing the bond pads.
    Type: Application
    Filed: August 18, 2006
    Publication date: February 21, 2008
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Richard J. Rassel
  • Patent number: 7276748
    Abstract: An imaging circuit, an imaging sensor, and a method of imaging. The imaging cell circuit including one or more imaging cell circuits, each imaging cell circuit comprising: a transistor having a floating body for holding charge generated in the floating body in response to exposure of the floating body to electromagnetic radiation; means for biasing the transistor wherein an output of the transistor is responsive to the electromagnetic radiation; and means for selectively connecting the floating body to a reset voltage supply.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Mark D. Jaffe, Alain Loiseau
  • Patent number: 7217968
    Abstract: A novel image sensor cell structure and method of manufacture. The imaging sensor comprises a substrate, a gate comprising a dielectric layer and gate conductor formed on the dielectric layer, a collection well layer of a first conductivity type formed below a surface of the substrate adjacent a first side of the gate conductor, a pinning layer of a second conductivity type formed atop the collection well at the substrate surface, and a diffusion region of a first conductivity type formed adjacent a second side of the gate conductor, the gate conductor forming a channel region between the collection well layer and the diffusion region. Part of the gate conductor bottom is recessed below the surface of the substrate. Preferably, a portion of the gate conductor is recessed at or below a bottom surface of the pinning layer to a depth such that the collection well intersects the channel region.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John Ellis-Monaghan, Mark D. Jaffe, Jerome B. Lasky
  • Patent number: 7205591
    Abstract: A pixel sensor cell structure and method of manufacture. The pixel cell comprises a doped layer formed adjacent to a first side of a transfer gate structure for coupling a collection well region and a channel region. Potential barrier interference to charge transfer caused by a pinning layer is reduced.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: April 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Jerome B Lasky, Richard A. Phelps
  • Patent number: 7205627
    Abstract: A structure (and method for forming the same) for an image sensor cell. The structure includes (a) a semiconductor substrate; (b) a charge collection well on the substrate, the charge collection well comprising a semiconductor material doped with a first doping polarity; (c) a surface pinning layer on and in direct physical contact with the charge collection well, the surface pinning layer comprising a semiconductor material doped with a second doping polarity opposite to the first doping polarity; and (d) an electrically conducting push electrode being in direct physical contact with the surface pinning layer but not being in direct physical contact with the charge collection well.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: April 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Richard J. Rassel
  • Patent number: 7193289
    Abstract: An image sensor array and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack with improved thickness uniformity to result in a pixel array exhibiting increased light sensitivity. In the sensor array, each Cu metallization level includes a Cu metal wire structure formed at locations between each array pixel and, a barrier material layer is formed on top each Cu metal wire structure that traverses the pixel optical path. By implementing a single mask or self-aligned mask methodology, a single etch is conducted to completely remove the interlevel dielectric and barrier layers that traverse the optical path. The etched opening is then refilled with dielectric material.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: March 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Anthony K. Stamper
  • Patent number: 7194706
    Abstract: A method is disclosed for designing scan chains in an integrated circuit chip with specific parameter sensitivities to identify fabrication process defects causing test fails and chip yield loss. The composition of scan paths in the integrated circuit chip is biased to allow them to also function as on-product process monitors. The method adds grouping constraints that bias scan chains to have common latch cell usage where possible, and also biases cell routing to constrain scan chain routing to given restricted metal layers for interconnects. The method assembles a list of latch design parameters which are sensitive to process variation or integrity, and formulates a plan for scan chain design which determines the number and the length of scan chains. A model is formulated of scan chain design based upon current state of yield and process integrity, wherein certain latch designs having dominant sensitivities are chosen for specific ones of the scan chains on the chip.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: March 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Greg Bazan, John M. Cohn, Matthew S. Grady, Leendert M. Huisman, Mark D. Jaffe, Phillip J. Nigh, Leah M. P. Pastel, Thomas G. Sopchak, David E. Sweenor, David P. Vallett
  • Patent number: 7141836
    Abstract: A novel pixel sensor structure formed on a substrate of a first conductivity type includes a photosensitive device of a second conductivity type and a surface pinning layer of the first conductivity type. An isolation structure is formed adjacent to the photosensitive device pinning layer. The isolation structure includes a dopant region comprising material of the first conductivity type selectively formed along a sidewall of the isolation structure that is adapted to electrically couple the surface pinning layer to the underlying substrate. The corresponding method for forming the dopant region selectively formed along the sidewall of the isolation structure comprises an out-diffusion process whereby dopant materials present in a doped material layer formed along selected portions in the isolation structure are driven into the underlying substrate during an anneal.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: November 28, 2006
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Mark D. Jaffe, Robert K. Leidy
  • Patent number: 7132339
    Abstract: An improved transistor structure that decreases source/drain (S/D) resistance without increasing gate-to-S/D capacitance, thereby increasing device operation. S/D structures are formed into recesses formed on a semiconductor wafer through a semiconductor layer and a first layer of a buried insulator having at least two layers. A body is formed from the semiconductor layer situated between the recesses, and the body comprises a top body surface and a bottom body surface that define a body thickness. Top portions of the S/D structures are within and abut the body thickness. An improved method for forming the improved transistor structure is also described and comprises: forming recesses through a semiconductor layer and a first layer of a buried insulator so that a body is situated between the recesses; and forming S/D structures into the recesses so that top portions of the S/D structures are within and abut a body thickness.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: November 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Mark D. Jaffe
  • Patent number: 7098067
    Abstract: A novel image sensor structure formed on a substrate of a first conductivity type includes a photosensitive device of a second conductivity type and a surface pinning layer of the first conductivity type. A trench isolation region is formed adjacent to the photosensitive device pinning layer. The structure includes a dopant region comprising material of the first conductivity type formed along a sidewall of the isolation region that is adapted to electrically couple the pinning layer to the substrate. The corresponding method facilitates an angled ion implantation of dopant material in the isolation region sidewall by first fabricating the photoresist layer and reducing its size by removing a corner, or a corner portion thereof, which may block the angled implant material. To facilitate the angled implant to the sidewall edge past resist block masks, two methods are proposed: 1) a spacer type etch of the imaged photoresist; or, 2) a corner sputter process of the imaged photoresist.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Mark D. Jaffe, Arthur P. Johnson, Robert K. Leidy, Jeffrey C. Maling