Patents by Inventor Mark Durlam

Mark Durlam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070002609
    Abstract: An integrated circuit device includes a magnetic random access memory (“MRAM”) architecture and a smart power integrated circuit architecture formed on the same substrate using the same fabrication process technology. The fabrication process technology is a modular process having a front end process and a back end process. In the example embodiment, the smart power architecture includes a power circuit component, a digital logic component, and an analog control component formed by the front end process, and a sensor architecture formed by the back end process. The MRAM architecture includes an MRAM circuit component formed by the front end process and an MRAM cell array formed by the back end process. In one practical embodiment, the sensor architecture includes a sensor component that is formed from the same magnetic tunnel junction core material utilized by the MRAM cell array.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: Young Chung, Robert Baird, Mark Durlam, Gregory Grynkewich, Eric Salter
  • Patent number: 7154772
    Abstract: A magnetoresistive random access memory (MRAM) has separate read and write paths. This reduces the peripheral circuitry by not requiring switching between read and write functions on a particular line. By having the paths dedicated to either read signals or write signals, the voltage levels can be optimized for these functions. The select transistors, which are part of only the read function, may be of the low-voltage type because they do not have to receive the relatively higher voltages of the write circuitry. Similarly, the write voltages do not have to be degraded to accommodate the lower-voltage type transistors. The size of the overall memory is kept efficiently small while improving performance. The memory cells are grouped so that adjacent to groups are coupled to a common global bit line which reduces the space required for providing the capacitance-reducing group approach to memory cell selection.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: December 26, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Joseph J. Nahas, Thomas W. Andre, Chitra K. Subramanian, Bradley J. Garni, Mark A. Durlam
  • Publication number: 20060273418
    Abstract: An integrated circuit device includes a magnetic random access memory (“MRAM”) architecture and at least one inductance element formed on the same substrate using the same fabrication process technology. The inductance element, which may be an inductor or a transformer, is formed at the same metal layer (or layers) as the program lines of the MRAM architecture. Any available metal layer in addition to the program line layers can be added to the inductance element to enhance its efficiency. The concurrent fabrication of the MRAM architecture and the inductance element facilitates an efficient and cost effective use of the physical space available over active circuit blocks of the substrate, resulting in three-dimensional integration.
    Type: Application
    Filed: June 7, 2005
    Publication date: December 7, 2006
    Inventors: Young Chung, Robert Baird, Mark Durlam, Bradley Engel
  • Patent number: 7144744
    Abstract: Magnetoelectronic memory element structures and methods for making such structures using a barrier layer as a material removal stop layer are provided. The methods comprise forming a digit line disposed at least partially within a dielectric layer. The dielectric material layer overlies an interconnect stack. A void space is etched in the dielectric layer to expose the interconnect stack. A conductive-barrier layer having a first portion and a second portion is deposited. The first portion overlies the digit line and the second portion is disposed within the void space and in electrical communication with the interconnect stack. A memory element layer is formed overlying the first portion and an electrode layer is deposited overlying the memory element layer. The electrode layer and the memory element layer are then patterned and etched.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: December 5, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mitchell T. Lien, Mark A. Durlam, Thomas V. Meixner, Loren J. Wise
  • Patent number: 7105363
    Abstract: A method for fabricating a cladded conductor (42) for use in a magnetoelectronics device is provided. The method includes providing a substrate (10) and forming a conductive barrier layer (12) overlying the substrate (10). A dielectric layer (16) is formed overlying the conductive barrier layer (12) and a conducting line (20) is formed within a portion of the dielectric layer (16). The dielectric layer (16) is removed and a flux concentrator (30) is formed overlying the conducting line (20).
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: September 12, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark A. Durlam, Jeffrey H. Baker, Brian R. Butcher, Mark F. Deherrera, John J. D'Urso, Earl D. Fuchs, Gregory W. Grynkewich, Kelly W. Kyler, Jaynal A. Molla, J. Jack Ren, Nicholas D. Rizzo
  • Patent number: 7087972
    Abstract: Magnetoelectronic device structures and methods for fabricating the same are provided. One method comprises forming a first and a second conductor. The first conductor is electrically coupled to an interconnect stack. A first insulating layer is deposited overlying the first conductor and the second conductor. A via is etched to substantially expose the first conductor. A protective capping layer is deposited by electroless deposition within the via and is electrically coupled to the first conductor. A magnetic memory element layer is formed within the via and overlying the second insulating layer and the second conductor.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 8, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: J. Jack Ren, Brian R. Butcher, Mark A. Durlam, Gregory W. Grynkewich
  • Publication number: 20060170068
    Abstract: Magnetoelectronic device structures and methods for fabricating the same are provided. One method comprises forming a first and a second conductor. The first conductor is electrically coupled to an interconnect stack. A first insulating layer is deposited overlying the first conductor and the second conductor. A via is etched to substantially expose the first conductor. A protective capping layer is deposited by electroless deposition within the via and is electrically coupled to the first conductor. A magnetic memory element layer is formed within the via and overlying the second insulating layer and the second conductor.
    Type: Application
    Filed: January 31, 2005
    Publication date: August 3, 2006
    Inventors: J. Ren, Brian Butcher, Mark Durlam, Gregory Grynkewich
  • Publication number: 20060088947
    Abstract: Magnetoelectronic memory element structures and methods for making such structures using a barrier layer as a material removal stop layer are provided. The methods comprise forming a digit line disposed at least partially within a dielectric layer. The dielectric material layer overlies an interconnect stack. A void space is etched in the dielectric layer to expose the interconnect stack. A conductive-barrier layer having a first portion and a second portion is deposited. The first portion overlies the digit line and the second portion is disposed within the void space and in electrical communication with the interconnect stack. A memory element layer is formed overlying the first portion and an electrode layer is deposited overlying the memory element layer. The electrode layer and the memory element layer are then patterned and etched.
    Type: Application
    Filed: October 27, 2004
    Publication date: April 27, 2006
    Inventors: Mitchell Lien, Mark Durlam, Thomas Meixner, Loren Wise
  • Patent number: 7031183
    Abstract: A magnetoresistive random access memory (MRAM) is embedded with another circuit type. Logic, such as a processing unit, is particularly well-suited circuit type for embedding with MRAM. The embedding is made more efficient by using a metal layer that is used as part of the interconnect for the other circuit also as part of the MRAM cell. The MRAM cells are all written by program lines, which are the two lines that cross to define a cell to be written. Thus, the design is simplified because there is commonality of usage of the metal line that is used for one of the program lines for the MRAM and for one of the interconnect lines for the logic.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: April 18, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gloria J. Kerszykowski, Li Hsin Chang, Mark A. Durlam, Mitchell T. Lien, Thomas V. Meixner, Loren J. Wise
  • Publication number: 20050208681
    Abstract: A method for fabricating a flux concentrating system (62) for use in a magnetoelectronics device is provided. The method comprises the steps of providing a bit line (10) formed in a substrate (12) and forming a first material layer (24) overlying the bit line (10) and the substrate (12). Etching is performed to form a trench (58) in the first material layer (24) and a cladding layer (56) is deposited in the trench (52). A buffer material layer (58) is formed overlying the cladding layer (56) and a portion of the buffer material layer (58) and a portion of the cladding layer (56) is removed.
    Type: Application
    Filed: May 9, 2005
    Publication date: September 22, 2005
    Inventors: Thomas Meixner, Gregory Grynkewich, Jaynal Molla, J. Ren, Richard Williams, Brian Butcher, Mark Durlam
  • Patent number: 6943038
    Abstract: A method for fabricating a flux concentrating system (62) for use in a magnetoelectronics device is provided. The method comprises the steps of providing a bit line (10) formed in a substrate (12) and forming a first material layer (24) overlying the bit line (10) and the substrate (12). Etching is performed to form a trench (58) in the first material layer (24) and a cladding layer (56) is deposited in the trench (52). A buffer material layer (58) is formed overlying the cladding layer (56) and a portion of the buffer material layer (58) and a portion of the cladding layer (56) is removed.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: September 13, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thomas V. Meixner, Gregory W. Grynkewich, Jaynal A. Molla, J. Jack Ren, Richard G. Williams, Brian R. Butcher, Mark A. Durlam
  • Patent number: 6936763
    Abstract: Shielded electronic integrated circuit apparatus (5) includes a substrate (10), with an eletronic integrated circuit (15) formed thereon, and a dielectric region (12) positioned on the electronic integrated circuit. The dielectric region and the substrate are substantially surrounded by lower and upper magnetic material regions (26, 30), deposited using electrochemical deposition, and magnetic material layers on each side (32, 34). Each of the lower and upper magnetic material regions preferably include a glue layer (36, 40), a seed layer (28, 24), and an electrochemically deposited magnetic material layer (26, 30). Generally, the electrochemically deposited magnetic material layer can be conveniently deposited by electroplating.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: August 30, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Nicholas D. Rizzo, Mark A. Durlam, Michael J. Roll, Kelly Kyler, Jaynal A. Molla
  • Publication number: 20050164413
    Abstract: A method for fabricating a flux concentrating system (62) for use in a magnetoelectronics device is provided. The method comprises the steps of providing a bit line (10) formed in a substrate (12) and forming a first material layer (24) overlying the bit line (10) and the substrate (12). Etching is performed to form a trench (58) in the first material layer (24) and a cladding layer (56) is deposited in the trench (52). A buffer material layer (58) is formed overlying the cladding layer (56) and a portion of the buffer material layer (58) and a portion of the cladding layer (56) is removed.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 28, 2005
    Inventors: Thomas Meixner, Gregory Grynkewich, Jaynal Molla, J. Ren, Richard Williams, Brian Butcher, Mark Durlam
  • Publication number: 20050158992
    Abstract: A method for fabricating a cladded conductor (42) for use in a magnetoelectronics device is provided. The method includes providing a substrate (10) and forming a conductive barrier layer (12) overlying the substrate (10). A dielectric layer (16) is formed overlying the conductive barrier layer (12) and a conducting line (20) is formed within a portion of the dielectric layer (16). The dielectric layer (16) is removed and a flux concentrator (30) is formed overlying the conducting line (20).
    Type: Application
    Filed: March 16, 2005
    Publication date: July 21, 2005
    Inventors: Mark Durlam, Jeffrey Baker, Brian Butcher, Mark Deherrera, John D'Urso, Earl Fuchs, Gregory Grynkewich, Kelly Kyler, Jaynal Molla, J. Ren, Nicholas Rizzo
  • Publication number: 20050152183
    Abstract: A magnetoresistive random access memory (MRAM) has separate read and write paths. This reduces the peripheral circuitry by not requiring switching between read and write functions on a particular line. By having the paths dedicated to either read signals or write signals, the voltage levels can be optimized for these functions. The select transistors, which are part of only the read function, may be of the low-voltage type because they do not have to receive the relatively higher voltages of the write circuitry. Similarly, the write voltages do not have to be degraded to accommodate the lower-voltage type transistors. The size of the overall memory is kept efficiently small while improving performance. The memory cells are grouped so that adjacent to groups are coupled to a common global bit line which reduces the space required for providing the capacitance-reducing group approach to memory cell selection.
    Type: Application
    Filed: March 9, 2005
    Publication date: July 14, 2005
    Inventors: Joseph Nahas, Thomas Andre, Chitra Subramanian, Bradley Garni, Mark Durlam
  • Patent number: 6912107
    Abstract: An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element (10) including a first electrode (14), a second electrode (18) and a spacer layer (16). The first electrode (14) and the second electrode (18) include ferromagnetic layers (26 & 28). A spacer layer (16) is located between the ferromagnetic layer (26) of the first electrode (14) and the ferromagnetic layer (28) of the second electrode (16) for permitting tunneling current in a direction generally perpendicular to the ferromagnetic layers (26 & 28). The device includes insulative veils (34) characterized as electrically isolating the first electrode (14) and the second electrode (18), the insulative veils (34) including non-magnetic and insulating dielectric properties.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 28, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Eugene Youjun Chen, Mark Durlam, Saied N. Tehrani, Mark DeHerrera, Gloria Kerszykowski, Kelly Wayne Kyler
  • Patent number: 6911156
    Abstract: A method for fabricating a magnetic memory element structure comprises providing a dielectric layer having a conducting via. A first magnetic layer is formed overlying the dielectric layer and is in electrical communication with the conducting via. A non-magnetic layer and a second magnetic layer are formed overlying the first magnetic layer. A first conductive layer is deposited overlying the second magnetic layer and is patterned. A portion of the second magnetic layer is exposed and is transformed to form an inactive portion and an active portion. The active portion comprises a portion of a memory element and the inactive portion comprises an insulator. A sidewall spacer is formed about at least one sidewall of the first conductive layer and a masking tab is formed that overlies a portion of the memory element and extends to overlie at least a portion of the conducting via.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: June 28, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory W. Grynkewich, Brian R. Butcher, Mark A. Durlam, Kelly Kyler, Kenneth H. Smith, Clarence J. Tracy
  • Patent number: 6909631
    Abstract: An MRAM is provided that minimizes the limits in MRAM density imposed by utilization of an isolation or select device in each memory cell. In addition, methods are provided for reading an MTJ in a ganged memory cell of the MRAM. The method includes determining an electrical value that is at least partially associated with a resistance of a ganged memory cell of the MRAM. The MTJ in the ganged memory cell is toggled and a second electrical value, which is at least partially associated with the resistance of the ganged memory cell, is determined after toggling the MTJ. Once the electrical value prior to the toggling and after the toggling is determined, the difference between the two electrical values is analyzed to determine the value of the MTJ.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: June 21, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark A. Durlam, Thomas W. Andre, Mark F. DeHerrera, Bradley N. Engel, Bradley J. Garni, Joseph J. Nahas, Nicholas D. Rizzo, Saied Tehrani
  • Publication number: 20050130374
    Abstract: A method for contacting an electrically conductive layer overlying a magnetoelectronics element includes forming a memory element layer overlying a dielectric region. A first electrically conductive layer is deposited overlying the memory element layer. A first dielectric layer is deposited overlying the first electrically conductive layer and is patterned and etched to form a first masking layer. Using the first masking layer, the first electrically conductive layer is etched. A second dielectric layer is deposited overlying the first masking layer and the dielectric region. A portion of the second dielectric layer is removed to expose the first masking layer. The second dielectric layer and the first masking layer are subjected to an etching chemistry such that the first masking layer is etched at a faster rate than the second dielectric layer. The etching exposes the first electrically conductive layer.
    Type: Application
    Filed: February 2, 2005
    Publication date: June 16, 2005
    Inventors: Gregory Grynkewich, Brian Butcher, Mark Durlam, Kelly Kyler, Charles Synder, Kenneth Smith, Clarence Tracy, Richard Williams
  • Publication number: 20050122772
    Abstract: A magnetoresistive random access memory (MRAM) is embedded with another circuit type. Logic, such as a processing unit, is particularly well-suited circuit type for embedding with MRAM. The embedding is made more efficient by using a metal layer that is used as part of the interconnect for the other circuit also as part of the MRAM cell. The MRAM cells are all written by program lines, which are the two lines that cross to define a cell to be written. Thus, the design is simplified because there is commonality of usage of the metal line that is used for one of the program lines for the MRAM and for one of the interconnect lines for the logic.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 9, 2005
    Inventors: Gloria Kerszykowski, Li Chang, Mark Durlam, Mitchell Lien, Thomas Meixner, Loren Wise