Patents by Inventor Mark Hiatt

Mark Hiatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120229908
    Abstract: An optics block includes a substrate having first and second opposing surfaces, the substrate being a first material, a plurality of through holes extending in the substrate between the first and second opposing surface, a second material, different than the first material, filling a portion of the through holes and extending on a portion of the first surface of the substrate outside the through holes, and a first lens structure in the second material and corresponding to each of the through holes.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: DigitalOptics Corporation East
    Inventors: Gregory J. Kintz, Michael R. Feldman, James E. Morris, Paul Elliott, David Keller, W. Hudson Welch, David Ovrutsky, Jeremy Huddleston, Mark Hiatt
  • Publication number: 20120154945
    Abstract: In one aspect, the present invention provides wafer level optical assemblies comprising one or more optical apertures spaced apart from optical wafers and/or optical wafer substrates. In some embodiments, a wafer level assembly described herein comprises a first wafer comprising a first perforation and a first aperture aligned with the first perforation and coupled to the first wafer.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Inventor: William Mark Hiatt
  • Patent number: 8189277
    Abstract: An optics block includes a substrate having first and second opposing surfaces, the substrate being a first material, a plurality of through holes extending in the substrate between the first and second opposing surface, a second material, different than the first material, filling a portion of the through holes and extending on a portion of the first surface of the substrate outside the through holes, and a first lens structure in the second material and corresponding to each of the through holes.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 29, 2012
    Assignee: Digitaloptics Corporation East
    Inventors: Gregory J. Kintz, Michael R. Feldman, James E. Morris, Paul Elliott, David Keller, W. Hudson Welch, David Ovrutsky, Jeremy Huddleston, Mark Hiatt
  • Patent number: 8106520
    Abstract: Some embodiments include apparatus, systems, and methods having a base, a first die, a second arranged in a stacked with the first die and the base, and a structure located in the stack and outside at least one of the first and second dice and configured to transfer signals between the base and at least one of the first and second dice.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: January 31, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Brent Keeth, Mark Hiatt, Terry R. Lee, Mark Tuttle, Rahul Advani, John F. Schreck
  • Publication number: 20110233777
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Publication number: 20110222171
    Abstract: An optics block includes a substrate having first and second opposing surfaces, the substrate being a first material, a plurality of through holes extending in the substrate between the first and second opposing surface, a second material, different than the first material, filling a portion of the through holes and extending on a portion of the first surface of the substrate outside the through holes, and a first lens structure in the second material and corresponding to each of the through holes.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 15, 2011
    Inventors: Gregory J. KINTZ, Michael R. Feldman, James E. Morris, Paul Elliott, David Keller, W. Hudson Welch, David Ovrutsky, Jeremy Huddleston, Mark Hiatt
  • Publication number: 20110204526
    Abstract: The invention includes methods of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit, methods of positioning a semiconductor substrate comprising an integrated circuit, methods of processing a semiconductor substrate, and semiconductor devices. In one implementation, a method of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit includes providing a semiconductor substrate comprising at least one integrated circuit die. The semiconductor substrate comprises a circuit side, a backside, and a plurality of conductive vias extending from the circuit side to the backside. The plurality of conductive vias on the semiconductor substrate backside is examined to determine location of portions of at least two of the plurality of conductive vias on the semiconductor substrate backside. From the determined location, x-y spatial orientation of the semiconductor substrate is determined.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dave Pratt, Kyle Kirby, Steve Oliver, Mark Hiatt
  • Publication number: 20110136336
    Abstract: Methods of forming a conductive via may include forming a blind via hole partially through a substrate, forming an aluminum film on surfaces of the substrate, removing a first portion of the aluminum film from some surfaces, selectively depositing conductive material onto a second portion of the aluminum film, and exposing the blind via hole through a back side of the substrate. Methods of fabricating a conductive via may include forming at least one via hole through at least one unplated bond pad, forming a first adhesive over at least one surface of the at least one via hole, forming a dielectric over the first adhesive, forming a base layer over the dielectric and the at least one unplated bond pad, and plating nickel onto the base layer.
    Type: Application
    Filed: February 17, 2011
    Publication date: June 9, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, William Mark Hiatt, Steven Oliver, Alan G. Wood, Sidney B. Rigg, James M. Wark, Kyle K. Kirby
  • Patent number: 7955946
    Abstract: The invention includes methods of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit, methods of positioning a semiconductor substrate comprising an integrated circuit, methods of processing a semiconductor substrate, and semiconductor devices. In one implementation, a method of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit includes providing a semiconductor substrate comprising at least one integrated circuit die. The semiconductor substrate comprises a circuit side, a backside, and a plurality of conductive vias extending from the circuit side to the backside. The plurality of conductive vias on the semiconductor substrate backside is examined to determine location of portions of at least two of the plurality of conductive vias on the semiconductor substrate backside. From the determined location, x-y spatial orientation of the semiconductor substrate is determined.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dave Pratt, Kyle Kirby, Steve Oliver, Mark Hiatt
  • Patent number: 7956443
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, Mark Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Publication number: 20110095429
    Abstract: Methods for forming conductive vias include foiling one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof A barrier layer may be fowled over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
    Type: Application
    Filed: January 6, 2011
    Publication date: April 28, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, William Mark Hiatt, Steve Oliver, Alan G. Wood, Sidney B. Rigg, James M. Wark, Kyle K. Kirby
  • Patent number: 7892972
    Abstract: Methods for forming conductive vias include forming one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof. A barrier layer may be formed over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, William Mark Hiatt, Steve Oliver, Alan G. Wood, Sidney B. Rigg, James M. Wark, Kyle K. Kirby
  • Patent number: 7833894
    Abstract: A method for forming through-wafer interconnects (TWI) in a substrate. Blind holes are formed from a surface, sidewalls thereof are passivated and coated with a conductive material. A vent hole is then formed from the opposite surface to intersect the blind hole. The blind hole is solder filled, followed by back thinning of the vent hole portion of the wafer to a final substrate thickness to expose the solder and conductive material at both the active surface and the thinned back side. A metal layer having a glass transition temperature greater than that of the solder may be plated to form a dam structure covering one or both ends of the TWI. Intermediate structures of semiconductor devices, semiconductor devices and systems are also disclosed.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: November 16, 2010
    Assignee: Micron Technology, Inc.
    Inventor: W. Mark Hiatt
  • Patent number: 7772115
    Abstract: A method for forming through-wafer interconnects (TWI) in a substrate of a thickness in excess of that of a semiconductor die such as a semiconductor wafer. Blind holes are formed from the active surface, sidewalls thereof are passivated and coated with a solder-wetting material. A vent hole is then formed from the opposite surface (e.g., wafer back side) to intersect the blind hole. The blind hole is solder filled, followed by back thinning of the vent hole portion of the wafer to a final substrate thickness to expose the solder and solder-wetting material at both the active surface and the thinned back side. A metal layer such as nickel, having a glass transition temperature greater than that of the solder, may be plated to form a dam structure covering one or both ends of the TWI including the solder and solder-wetting material to prevent leakage of molten solder from the TWI during high temperature excursions.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventor: W. Mark Hiatt
  • Publication number: 20100171217
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 8, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Patent number: 7709776
    Abstract: Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 4, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Warren M. Farnworth, Sidney B. Rigg, William Mark Hiatt, Alan G. Wood, Peter A. Benson, James M. Wark, David R. Hembree, Kyle K. Kirby, Charles M. Watkins, Salman Akram
  • Publication number: 20100059898
    Abstract: Some embodiments include apparatus, systems, and methods having a base, a first die, a second arranged in a stacked with the first die and the base, and a structure located in the stack and outside at least one of the first and second dice and configured to transfer signals between the base and at least one of the first and second dice.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Inventors: Brent Keeth, Mark Hiatt, Terry R. Lee, Mark Tuttle, Rahul Advani, John F. Schreck
  • Patent number: 7632713
    Abstract: Microelectronic imaging devices and methods of packaging microelectronic imaging devices are disclosed herein. In one embodiment, the microelectronic imaging devices include an interposer substrate and a plurality of imager units coupled to the interposer substrate. The interposer substrate includes a plurality of openings and a plurality of contact arrays proximate to corresponding openings. The individual imager units include a microelectronic die with an image sensor and a plurality of bond-pads electrically coupled to the image sensor. The image sensors are aligned with corresponding openings on the interposer substrate, and the bond-pads are electrically coupled to corresponding contacts on the interposer substrate.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: December 15, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Warren M. Farnworth, William Mark Hiatt
  • Publication number: 20090155949
    Abstract: Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 18, 2009
    Inventors: Warren M. Farnworth, Sidney B. Rigg, William Mark Hiatt, Alan G. Wood, Peter A. Benson, James M. Wark, David R. Hembree, Kyle K. Kirby, Charles M. Watkins, Salman Akram
  • Patent number: 7504615
    Abstract: Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 17, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Warren M. Farnworth, Sidney B. Rigg, William Mark Hiatt, Alan G. Wood, Peter A. Benson, James M. Wark, David R. Hembree, Kyle K. Kirby, Charles M. Watkins, Salman Akram