Patents by Inventor Mark L. Mathis

Mark L. Mathis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7837729
    Abstract: The invention is a tissue shaping system, including a tissue shaping device with an expandable anchor and a lock; a delivery catheter; a delivery mechanism adapted to deliver the tissue shaping device from outside a patient to a target site within a lumen within the patient via the delivery catheter; and an actuator adapted to deliver an actuation force to the lock to lock the anchor in an expanded configuration. The invention is also a system adapted to percutaneously deliver and deploy a tissue shaping device at a target site within a lumen of a patient. The system includes: a handle; a delivery mechanism supported by the handle and adapted to deliver the tissue shaping device from outside the patient to the treatment site via a delivery catheter; and an actuator supported by the handle and adapted to deliver an actuation force to lock an anchor of the tissue shaping device in an expanded configuration.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 23, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Lucas S. Gordon, Mark L. Mathis, Gregory Nieminen, Leonard Kowalsky, Ryan Braxtan, Brian J. Doll
  • Patent number: 7828841
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, Leonard Kowalsky, David G. Reuter, Cruz Beeson
  • Publication number: 20100280602
    Abstract: A mitral valve annulus reshaping device includes at least a portion that is formed of a biocompatible shape memory alloy SMA having a characteristic temperature, Af, that is preferably below body temperature. The device is constrained in an unstable martensite (UM) state while being introduced through a catheter that passes through the venous system and into the coronary sinus of the heart. The reshaping device is deployed adjacent to the mitral valve annulus of the heart as it is forced from the catheter. When released from the constraint of the catheter, the SMA of the device at least partially converts from the UM state to an austenitic state and attempts to change to a programmed shape that exerts a force on the adjacent tissue and modifies the shape of the annulus. The strain of the SMA can be varied when the device is within the coronary sinus.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 4, 2010
    Applicant: Cardiac Dimensions, Inc.
    Inventor: Mark L. Mathis
  • Patent number: 7814635
    Abstract: A tissue shaping device adapted to be deployed in a vessel to reshape tissue adjacent to the vessel. In some embodiments the device includes first and second anchors and a connector disposed between the first and second anchors, with the connector being integral with at least a portion of the first anchor. The invention is also a method of making a tissue shaping device including the steps of removing material from a blank to form a connector and an integral anchor portion; and attaching a non-integral anchor portion to the integral anchor portion.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: October 19, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Lucas Gordon, Mark L. Mathis, Nathan Aronson
  • Patent number: 7794496
    Abstract: A tissue shaping device adapted to be deployed in a vessel to reshape tissue adjacent to the vessel. In some embodiments the device includes first and second anchors and a connector disposed between the first and second anchors, with the connector being integral with at least a portion of the first anchor. The invention is also a method of making a tissue shaping device including the steps of removing material from a blank to form a connector and an integral anchor portion; and attaching a non-integral anchor portion to the integral anchor portion.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: September 14, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Lucas Gordon, Mark L. Mathis, Nathan Aronson
  • Patent number: 7758639
    Abstract: A mitral valve annulus reshaping device includes at least a portion that is formed of a biocompatible shape memory alloy SMA having a characteristic temperature, Af, that is preferably below body temperature. The device is constrained in an unstable martensite (UM) state while being introduced through a catheter that passes through the venous system and into the coronary sinus of the heart. The reshaping device is deployed adjacent to the mitral valve annulus of the heart as it is forced from the catheter. When released from the constraint of the catheter, the SMA of the device at least partially converts from the UM state to an austenitic state and attempts to change to a programmed shape that exerts a force on the adjacent tissue and modifies the shape of the annulus. The strain of the SMA can be varied when the device is within the coronary sinus.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: July 20, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventor: Mark L. Mathis
  • Publication number: 20100168847
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 1, 2010
    Inventors: Clifton A. Alferness, John M. Adams, Mark L. Mathis, David G. Reuter, Cruz Beeson, Leonard Kowalsky
  • Publication number: 20100100196
    Abstract: A lung volume reduction system is disclosed comprising an elongate implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to compress lung tissue. The implant may be longer in axial length than an axial length of the target axial region in which it is deployed. Deployment may involve allowing an end of the implant to move relative to surrounding tissue while the implant is progressively deployed.
    Type: Application
    Filed: September 11, 2009
    Publication date: April 22, 2010
    Applicant: PneumRx, Inc.
    Inventors: David Thompson, Nathan Aronson, Patrick Wu, David Lehrberg, Mark L. Mathis, Michael Boutillette, Jaime Vasquez
  • Publication number: 20100070050
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 18, 2010
    Applicant: PneumRx, Inc.
    Inventors: Mark L. Mathis, David Thompson, Patrick Wu
  • Patent number: 7674287
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: March 9, 2010
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Clifton A. Alferness, John M. Adams, Mark L. Mathis, David G. Reuter, Cruz Beeson, Leonard Kowalsky
  • Patent number: 7608102
    Abstract: A mitral valve therapy device and method treats dilated cardiomyopathy. The device is configured to be placed in the coronary sinus of a heart adjacent to the mitral valve annulus. The device includes a force distributor that distributes an applied force along a pericardial wall of the coronary sinus, and a force applier that applies the applied force to one or more discrete portions of a wall of the coronary sinus adjacent to the mitral valve annulus to reshape the mitral valve annulus in a localized manner.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: October 27, 2009
    Assignee: Cardiac Dimensions, Inc.
    Inventors: John M. Adams, David G. Reuter, Mark L. Mathis, Scott J. Wolf
  • Patent number: 7549984
    Abstract: The invention provides methods of performing lung volume reduction to treat a patient. One aspect of the invention provides a method of compressing a first portion of a lung of a patient including the following steps: providing a vent connecting the first portion of the lung to the exterior of the patient; isolating the first portion of the lung from a second portion of the lung adjacent the first portion; and delivering pressurized fluid to the second portion of the lung to compress the first portion of the lung.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: June 23, 2009
    Assignee: PneumRx, Inc.
    Inventor: Mark L. Mathis
  • Publication number: 20090076623
    Abstract: The invention provides improved medical devices, therapeutic treatment systems, and treatment methods for treatment of the lung. A lung volume reduction system includes an implantable device having an elongate body that is sized and shaped for delivery via the airway system to a lung airway of a patient. The implant is inserted and positioned while the implant is in a delivery configuration, and is reconfigured to a deployed configuration so as to locally compress adjacent tissue of the lung, with portions of the elongate body generally moving laterally within the airway so as to laterally compress lung tissue. A plurality of such implants will often be used to treat a lung of a patient.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: PNEUMRX, INC.
    Inventors: Mark L. Mathis, David Thompson, Nathan Aronson, Patrick Wu
  • Publication number: 20090076622
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: PNEUMRX, INC.
    Inventors: David Thompson, Patrick Wu, David Lehrberg, Mark L. Mathis, Michael Boutillette
  • Patent number: 7503931
    Abstract: An assembly for effecting the condition of a mitral valve annulus includes a mitral valve therapy device, a coupling structure carried by the device, a catheter, a second coupling structure, and a locking member. To implant the device, the device is first releasably locked to a pushing member by the coupling structures and the locking member. When the device is positioned within the coronary sinus adjacent the mitral valve annulus and deployed, the coupling structures may be released from each other by the release of the locking member.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: March 17, 2009
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Leonard Kowalsky, Gregory D. Nieminen, Ryan H. Braxtan, Mark L. Mathis
  • Patent number: 7503932
    Abstract: The present invention relates to a medical device and uses thereof that supports or changes the shape of tissue near a vessel in which the device is placed. The present invention is particularly useful in reducing mitral valve regurgitation by changing the shape of or supporting a mitral valve annulus. The device includes a support structure, a proximal anchor adapted to be positioned in a superior vena cava, and a distal anchor adapted to be positioned in a coronary sinus. The support structure engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: March 17, 2009
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, Gregory Nieminen, Nathan Aronson, Garrett Beget
  • Publication number: 20090018526
    Abstract: The present invention provides devices and methods for use in the perfusion of organs and anatomical regions. In one aspect the present method provides a percutaneously deliverable device for supporting a vessel in a human or animal subject including means for supporting the vessel during delivery of a fluid thereto or collection of a fluid therefrom. In another aspect the invention provides a method for delivery or collection of a fluid to or from an organ or anatomical region in a human or animal subject, the method including the step of supporting a vessel associated with the organ or anatomical region. The devices and methods may be used to deliver, remove or recirculate a therapeutic agent to an organ or anatomical region.
    Type: Application
    Filed: August 25, 2006
    Publication date: January 15, 2009
    Inventors: John Melmouth Power, Mark L. Mathis, David Martin Kaye, Adam Lucas Bilney
  • Publication number: 20090012626
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Applicant: PNEUMRX, INC.
    Inventors: David THOMPSON, Nathan ARONSON, Patrick WU, David LEHRBERG, Mark L. MATHIS, Michael BOUTILLETTE, Jaime VASQUEZ
  • Publication number: 20080288060
    Abstract: In a method of treating valvular insufficiency in a patient, a plurality of filaments (2) are used to engage tissue at spaced apart locations of an annulus (1) of the valve being treated. The engaged filaments (2) are drawn inward so as to draw the engaged tissue around the valve annulus (1) inward. The filaments (2) are then secured with the engaged tissue in the drawn-in configuration. Inward drawing of the engaged tissue improves valve function by reducing the valve annulus (1). Alternatively or additionally, anchor means may be used to secure the filaments to a region of robust tissue, thus drawing the engaged tissue toward the anchor means to further improve valve function.
    Type: Application
    Filed: July 6, 2005
    Publication date: November 20, 2008
    Applicant: Baker Medical Research Institute
    Inventors: David Martin Kaye, John Melmouth Power, Clifton A. Alferness, Adam Lucas Bilney, Mark L. Mathis
  • Patent number: 7452375
    Abstract: An anchor anchors a therapeutic device having an elongated body within a body lumen. The anchor includes a fixation member carried on the device which is adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen. The anchor further includes a lock that locks the fixation member in the second configuration. The fixation member may be locked in any one of a plurality of intermediate points between the first configuration and a maximum second configuration.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: November 18, 2008
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Mark L. Mathis, Leonard Kowalsky, David G. Reuter, Cruz Beeson