Patents by Inventor Mark L. Mathis

Mark L. Mathis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170065282
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 9, 2017
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Publication number: 20170027584
    Abstract: A device for enhancing the breathing efficiency of a patient is provided. The implantable device may include a deployed configuration with one or more helical sections with proximal end in a stand-off proximal end configuration. The stand-off proximal end configuration may reduce migration of the deployed device and may preserve implant tissue compression. Alternative configurations may include two or more helical sections with a transition section disposed between the two or more helical sections. A device may include a right-handed helical section and a left-handed helical section and the transition section comprises a switchback transition section. The switchback section may provide greater control of the device during deployment by limiting recoiling forces of a device comprising a spring material. The deployed device may compress the lung to increase a gas filling resistance of the compressed portion of the lung, and/or increase tension and elastic recoil in other portions of the lung.
    Type: Application
    Filed: June 24, 2016
    Publication date: February 2, 2017
    Inventors: Jaime Vasquez, Mark L. Mathis, Timothy Machold, Andrew Stein
  • Publication number: 20170027585
    Abstract: The invention provides improved medical devices, therapeutic treatment systems, and treatment methods for treatment of the lung. A lung volume reduction system includes an implantable device having an elongate body that is sized and shaped for delivery via the airway system to a lung airway of a patient. The implant is inserted and positioned while the implant is in a delivery configuration, and is reconfigured to a deployed configuration so as to locally compress adjacent tissue of the lung, with portions of the elongate body generally moving laterally within the airway so as to laterally compress lung tissue. A plurality of such implants will often be used to treat a lung of a patient.
    Type: Application
    Filed: June 24, 2016
    Publication date: February 2, 2017
    Inventors: Mark L. Mathis, David Thompson, Nathan Aronson, Patrick Wu
  • Publication number: 20160374808
    Abstract: Devices for treating mitral valve regurgitation, including a distal expandable anchor, a proximal expandable anchor, and a fixed length connecting member extending from the proximal expandable anchor to the distal expandable anchor, where at least one of the proximal and distal anchors includes first and second arm segments that extend from one end of the device toward the connecting member and the other anchor when in a collapsed delivery configuration, and where the at least one of the proximal and distal anchors that comprises the first and second arm segments has an expanded configuration in which the first and second arm segments extend radially outwardly such that the first and second arm segments extend away from one another toward the connector, and meet one another at a location axially spaced from the end of the device.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Mark L. MATHIS, Gregory D. NIEMINEN, David G. REUTER
  • Publication number: 20160374809
    Abstract: An anchor anchors a therapeutic device having an elongated body within a body lumen. The anchor includes a fixation member carried on the device which is adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen. The anchor further includes a lock that locks the fixation member in the second configuration. The fixation member may be locked in any one of a plurality of intermediate points between the first configuration and a maximum second configuration.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Mark L. MATHIS, Leonard KOWALSKY, David G. REUTER, Cruz BEESON
  • Publication number: 20160374810
    Abstract: An anchor anchors a therapeutic device having an elongated body within a body lumen. The anchor includes a fixation member carried on the device which is adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen. The anchor further includes a lock that locks the fixation member in the second configuration. The fixation member may be locked in any one of a plurality of intermediate points between the first configuration and a maximum second configuration.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Mark L. MATHIS, Leonard KOWALSKY, David G. REUTER, Cruz BEESON
  • Publication number: 20160374806
    Abstract: Devices for treating mitral valve regurgitation, including a distal expandable anchor, a proximal expandable anchor, and a fixed length connecting member extending from the proximal expandable anchor to the distal expandable anchor, where at least one of the proximal and distal anchors includes first and second arm segments that extend from one end of the device toward the connecting member and the other anchor when in a collapsed delivery configuration, and where the at least one of the proximal and distal anchors that comprises the first and second arm segments has an expanded configuration in which the first and second arm segments extend radially outwardly such that the first and second arm segments extend away from one another toward the connector, and meet one another at a location axially spaced from the end of the device.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Mark L. MATHIS, Gregory D. NIEMINEN, David G. REUTER
  • Publication number: 20160374807
    Abstract: Devices for treating mitral valve regurgitation, including a distal expandable anchor, a proximal expandable anchor, and a fixed length connecting member extending from the proximal expandable anchor to the distal expandable anchor, where at least one of the proximal and distal anchors includes first and second arm segments that extend from one end of the device toward the connecting member and the other anchor when in a collapsed delivery configuration, and where the at least one of the proximal and distal anchors that comprises the first and second arm segments has an expanded configuration in which the first and second arm segments extend radially outwardly such that the first and second arm segments extend away from one another toward the connector, and meet one another at a location axially spaced from the end of the device.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Mark L. MATHIS, Gregory D. NIEMINEN, David G. REUTER
  • Publication number: 20160338833
    Abstract: Devices for treating mitral valve regurgitation, including a distal expandable anchor, a proximal expandable anchor, and a fixed length connecting member extending from the proximal expandable anchor to the distal expandable anchor, where at least one of the proximal and distal anchors includes first and second arm segments that extend from one end of the device toward the connecting member and the other anchor when in a collapsed delivery configuration, and where the at least one of the proximal and distal anchors that comprises the first and second arm segments has an expanded configuration in which the first and second arm segments extend radially outwardly such that the first and second arm segments extend away from one another toward the connector, and meet one another at a location axially spaced from the end of the device.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Mark L. MATHIS, Gregory D. NIEMINEN, David G. REUTER
  • Publication number: 20160338832
    Abstract: Methods of treating mitral valve regurgitation, including causing a distal expandable anchor to self-expand within a coronary sinus, anchoring the distal expandable anchor against movement in the coronary sinus, changing the geometry of a mitral valve annulus, causing a proximal expandable anchor to self-expand within the coronary sinus, anchoring the proximal expandable anchor against movement within the coronary sinus, and withdrawing the delivery system from the coronary sinus.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Mark L. MATHIS, Gregory D. NIEMINEN, David G. REUTER
  • Patent number: 9498604
    Abstract: A vessel-occluding medical device for the use in diagnosis and/or treatment of cardiovascular disease in the human body includes an outer tube, an inner tube slidably housed within the outer tube, and a tubular sleeve comprising a generally U-shaped, direction reversing region, which moves along the length of the tubular sleeve, to assume radially contracted and radially expanded state as the inner and outer tubes move between the first and second positions. When the tubular sleeve is in the radially expanded state, the inner portion of the tubular sleeve has a funnel-shaped surface and a longitudinally-extending opening to permit material to pass therethrough for receipt of material into the inner tube.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 22, 2016
    Assignee: GENESIS TECHNOLOGIES LLC
    Inventors: William R. Dubrul, Brent D. Seybold, Mark L. Mathis, Philip M. Leopold, Richard E. Fulton, III
  • Patent number: 9474533
    Abstract: Elongate implant structures can be introduced into an airway system to a target airway axial region, often to apply lateral bending and/or compression forces against the lung tissue from within the airways for an extended period of time. Structures or features of the implants may inhibit tissue reactions that might otherwise allow portions of the device to eventually traverse through the wall of the airway. The devices may enhance the area bearing laterally on the tissue of a surrounding airway lumen wall. Embodiments may have features which increase the device friction with the airway to allow the device to grip the surrounding airway as the device is deployed. An appropriate adhesive may be introduced around the device in the lung. Hydrophilic material may inhibit biofilm formation, or features which induce some tissue ingrowth (stimulation of tissue growth) may enhance implanted device supported.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 25, 2016
    Assignee: PneumRx, Inc.
    Inventors: Mark L. Mathis, Patrick Wu, David Lehrberg, Jaime Vasquez, Erin McGurk, Ronald Dieck, Andrew Stein
  • Patent number: 9474608
    Abstract: An anchor anchors a therapeutic device having an elongated body within a body lumen. The anchor includes a fixation member carried on the device which is adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen. The anchor further includes a lock that locks the fixation member in the second configuration. The fixation member may be locked in any one of a plurality of intermediate points between the first configuration and a maximum second configuration.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: October 25, 2016
    Assignee: CARDIAC DIMENSIONS PTY. LTD.
    Inventors: Mark L. Mathis, Leonard Kowalsky, David G. Reuter, Cruz Beeson
  • Patent number: 9408695
    Abstract: A device affects the mitral valve annulus geometry of a heart. The device includes a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart and a second anchor configured to be positioned within the coronary sinus of the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart. The second anchor, when deployed, anchors against distal movement and is moveable in a proximal direction. The device further includes a connecting member having a fixed length permanently attached to the first and second anchors. As a result, when the first and second anchors are within the coronary sinus with the first anchor anchored in the coronary sinus, the second anchor may be displaced proximally to affect the geometry of the mitral valve annulus and released to maintain the effect on the mitral valve geometry.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: August 9, 2016
    Assignee: CARDIAC DIMENSIONS PTY. LTD.
    Inventors: Mark L. Mathis, Gregory D. Nieminen, David G. Reuter
  • Patent number: 9402633
    Abstract: A device for enhancing the breathing efficiency of a patient is provided. The implantable device may include a deployed configuration with one or more helical sections with proximal end in a stand-off proximal end configuration. The stand-off proximal end configuration may reduce migration of the deployed device and may preserve implant tissue compression. Alternative configurations may include two or more helical sections with a transition section disposed between the two or more helical sections. A device may include a right-handed helical section and a left-handed helical section and the transition section comprises a switchback transition section. The switchback section may provide greater control of the device during deployment by limiting recoiling forces of a device comprising a spring material. The deployed device may compress the lung to increase a gas filling resistance of the compressed portion of the lung, and/or increase tension and elastic recoil in other portions of the lung.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 2, 2016
    Assignee: PneumRx, Inc.
    Inventors: Jaime Vasquez, Mark L. Mathis, Timothy Machold, Andrew Stein
  • Patent number: 9402632
    Abstract: The invention provides improved medical devices, therapeutic treatment systems, and treatment methods for treatment of the lung. A lung volume reduction system includes an implantable device having an elongate body that is sized and shaped for delivery via the airway system to a lung airway of a patient. The implant is inserted and positioned while the implant is in a delivery configuration, and is reconfigured to a deployed configuration so as to locally compress adjacent tissue of the lung, with portions of the elongate body generally moving laterally within the airway so as to laterally compress lung tissue. A plurality of such implants will often be used to treat a lung of a patient.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 2, 2016
    Assignee: PneumRx, Inc.
    Inventors: Mark L. Mathis, David Thompson, Nathan Aronson, Patrick Wu
  • Patent number: 9402971
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: August 2, 2016
    Assignee: PneumRx, Inc.
    Inventor: Mark L. Mathis
  • Publication number: 20160113657
    Abstract: A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 28, 2016
    Inventors: Mark L. Mathis, David Thompson, Patrick Wu
  • Publication number: 20160030714
    Abstract: The present invention provides devices and methods for use in the perfusion of organs and anatomical regions. In one aspect the present method provides a percutaneously deliverable device for supporting a vessel in a human or animal subject including means for supporting the vessel during delivery of a fluid thereto or collection of a fluid therefrom. In another aspect the invention provides a method for delivery or collection of a fluid to or from an organ or anatomical region in a human or animal subject, the method including the step of supporting a vessel associated with the organ or anatomical region. The devices and methods may be used to deliver, remove or recirculate a therapeutic agent to an organ or anatomical region.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Applicant: OSPREY MEDICAL, INC.
    Inventors: John Melmouth Power, Mark L. Mathis, David Martin Kaye, Adam Lucas Bilney
  • Publication number: 20160022293
    Abstract: A vessel-occluding medical device for the use in diagnosis and/or treatment of cardiovascular disease in the human body includes an outer tube, an inner tube slidably housed within the outer tube, and a tubular sleeve comprising a generally U-shaped, direction reversing region, which moves along the length of the tubular sleeve, to assume radially contracted and radially expanded state as the inner and outer tubes move between the first and second positions. When the tubular sleeve is in the radially expanded state, the inner portion of the tubular sleeve has a funnel-shaped surface and a longitudinally-extending opening to permit material to pass therethrough for receipt of material into the inner tube.
    Type: Application
    Filed: October 8, 2015
    Publication date: January 28, 2016
    Inventors: William R. DUBRUL, Brent D. SEYBOLD, Mark L. MATHIS, Phillip M. LEOPOLD, Richard E. FULTON