Patents by Inventor Markus Lenski

Markus Lenski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8765542
    Abstract: One method disclosed includes forming a gate structure of a transistor above a surface of a semiconducting substrate, forming a sidewall spacer proximate the gate structure, forming a sacrificial layer of material above the protective cap layer, sidewall spacer and substrate, forming an OPL layer above the sacrificial layer, reducing a thickness of the OPL layer such that, after the reduction, an upper surface of the OPL layer is positioned at a level that is below a level of an upper surface of the protective cap layer, performing a first etching process to remove the sacrificial layer from above the protective cap layer to expose the protective cap layer for further processing, performing a second etching process to remove the protective cap layer and performing at least one process operation to remove at least one of the OPL layer or the sacrificial layer from above the surface of the substrate.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Joachim Patzer, Frank Seliger, Markus Lenski, Stephan Kronholz
  • Patent number: 8765559
    Abstract: When forming sophisticated gate electrode structures, such as high-k metal gate electrode structures, an appropriate encapsulation may be achieved, while also undue material loss of a strain-inducing semiconductor material that is provided in one type of transistor may be avoided. To this end, the patterning of the protective spacer structure prior to depositing the strain-inducing semiconductor material may be achieved for each type of transistor on the basis of the same process flow, while, after the deposition of the strain-inducing semiconductor material, an etch stop layer may be provided so as to preserve integrity of the active regions.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Gunda Beernink, Markus Lenski, Frank Seliger, Frank Richter
  • Patent number: 8735270
    Abstract: In a replacement gate approach, a superior cross-sectional shape of the gate opening may be achieved by performing a material erosion process in an intermediate state of removing the placeholder material. Consequently, the remaining portion of the placeholder material may efficiently protect the underlying sensitive materials, such as a high-k dielectric material, when performing the corner rounding process sequence.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: May 27, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Klaus Hempel, Sven Beyer, Markus Lenski, Stephan Kruegel
  • Publication number: 20140113419
    Abstract: In one example, the method includes forming a plurality of isolation structures in a semiconducting substrate that define first and second active regions where first and second transistor devices, respectively, will be formed, forming a hard mask layer on a surface of the substrate above the first and second active regions, wherein the hard mask layer comprises at least one of carbon, fluorine, xenon or germanium ions, performing a first etching process to remove a portion of the hard mask layer and expose a surface of one of the first and second active regions, after performing the first etching process, forming a channel semiconductor material on the surface of the active region that was exposed by the first etching process, and after forming the channel semiconductor material, performing a second etching process to remove remaining portions of the hard mask layer that were not removed during the first etching process.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Thilo Scheiper, Jan Hoentschel, Markus Lenski, Rolf Stephan
  • Patent number: 8652917
    Abstract: When forming sophisticated transistors on the basis of a high-k metal gate electrode structure and a strain-inducing semiconductor alloy, a superior wet cleaning process strategy is applied after forming cavities in order to reduce undue modification of sensitive gate materials, such as high-k dielectric materials, metal-containing electrode materials and the like, and modification of a threshold voltage adjusting semiconductor alloy. Thus, the pronounced dependence of the threshold voltage of transistors of different width may be significantly reduced compared to conventional strategies.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 18, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Markus Lenski, Stephan Kronholz, Nadja Zakowsky
  • Publication number: 20140011302
    Abstract: By reducing a deposition rate and maintaining a low bias power in a plasma atmosphere, a spacer layer, for example a silicon nitride layer, may be deposited that exhibits tensile stress. The amount of tensile stress is controllable within a wide range, thereby providing the potential for forming sidewall spacer elements that modify the charge carrier mobility and thus the conductivity of the channel region of a field effect transistor.
    Type: Application
    Filed: September 11, 2013
    Publication date: January 9, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Hartmut Ruelke, Katja Huy, Markus Lenski
  • Publication number: 20130316511
    Abstract: When forming sophisticated transistors on the basis of a high-k metal gate electrode structure and a strain-inducing semiconductor alloy, a superior wet cleaning process strategy is applied after forming cavities in order to reduce undue modification of sensitive gate materials, such as high-k dielectric materials, metal-containing electrode materials and the like, and modification of a threshold voltage adjusting semiconductor alloy. Thus, the pronounced dependence of the threshold voltage of transistors of different width may be significantly reduced compared to conventional strategies.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Markus Lenski, Stephan Kronholz, Nadja Zakowsky
  • Patent number: 8564120
    Abstract: By providing heat dissipation elements or heat pipes in temperature critical areas of a semiconductor device, enhanced performance, reliability and packing density may be achieved. The heat dissipation elements may be formed on the basis of standard manufacturing techniques and may be positioned in close proximity to individual transistor elements and/or may be used for shielding particular circuit portions.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 22, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Anthony Mowry, David Farber, Fred Hause, Markus Lenski
  • Publication number: 20130273729
    Abstract: In a replacement gate approach, a superior cross-sectional shape of the gate opening may be achieved by performing a material erosion process in an intermediate state of removing the placeholder material. Consequently, the remaining portion of the placeholder material may efficiently protect the underlying sensitive materials, such as a high-k dielectric material, when performing the corner rounding process sequence.
    Type: Application
    Filed: May 7, 2013
    Publication date: October 17, 2013
    Inventors: Klaus Hempel, Sven Beyer, Markus Lenski, Stephan Kruegel
  • Patent number: 8557667
    Abstract: By reducing a deposition rate and maintaining a low bias power in a plasma atmosphere, a spacer layer, for example a silicon nitride layer, may be deposited that exhibits tensile stress. The amount of tensile stress is controllable within a wide range, thereby providing the potential for forming sidewall spacer elements that modify the charge carrier mobility and thus the conductivity of the channel region of a field effect transistor.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: October 15, 2013
    Assignee: Globalfoundries Inc.
    Inventors: Hartmut Rülke, Katja Huy, Markus Lenski
  • Publication number: 20130234213
    Abstract: The amount of Pt residues remaining after forming Pt-containing NiSi is reduced by performing a rework including applying SPM at a temperature of 130° C. in a SWC tool, if Pt residue is detected. Embodiments include depositing a layer of Ni/Pt on a semiconductor substrate, annealing the deposited Ni/Pt layer, removing unreacted Ni from the annealed Ni/Pt layer, annealing the Ni removed Ni/Pt layer, removing unreacted Pt from the annealed Ni removed Ni/Pt layer, analyzing the Pt removed Ni/Pt layer for unreacted Pt residue, and if unreacted Pt residue is detected, applying SPM to the Pt removed Ni/Pt layer in a SWC tool. The SPM may be applied to the Pt removed Ni'/Pt layer at a temperature of 130° C.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Sivakumar KUMARASAMY, Clemens Fitz, Markus Lenski, Jochen Poth, Kristin Schupke
  • Patent number: 8530894
    Abstract: By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 10, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Anthony Mowry, Casey Scott, Vassilios Papageorgiou, Andy Wei, Markus Lenski, Andreas Gehring
  • Patent number: 8507351
    Abstract: By selectively modifying the spacer width, for instance, by reducing the spacer width on the basis of implantation masks, an individual adaptation of dopant profiles may be achieved without unduly contributing to the overall process complexity. For example, in sophisticated integrated circuits, the performance of transistors of the same or different conductivity type may be individually adjusted by providing different sidewall spacer widths on the basis of an appropriate masking regime.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 13, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Anthony Mowry, Markus Lenski, Guido Koerner, Ralf Otterbach
  • Publication number: 20130157450
    Abstract: Disclosed herein are various methods of forming metal silicide regions on semiconductor devices. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, performing a selective metal silicide formation process to form metal silicide regions in source/drain regions formed in or above the substrate, after forming the metal silicide regions, removing the sacrificial gate structure to define a gate opening and forming a replacement gate structure in the gate opening, the replacement gate structure comprised of at least one metal layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Clemens Fitz, Peter Baars, Markus Lenski
  • Patent number: 8445378
    Abstract: Memory cells in integrated circuit devices may be formed on the basis of functional molecules which may be positioned within via openings on the basis of appropriate patterning techniques, which may also be used for forming semiconductor-based integrated circuits. Consequently, memory cells may be formed on a “molecular” level without requiring extremely sophisticated patterning regimes, such as electron beam lithography and the like.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: May 21, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Ralf Richter
  • Patent number: 8440561
    Abstract: In a stacked chip configuration, the “inter chip” connection is established on the basis of functional molecules, thereby providing a fast and space-efficient communication between the different semiconductor chips.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 14, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Ralf Richter
  • Patent number: 8440559
    Abstract: Generally, the present disclosure is directed work function adjustment in high-k metal gate electrode structures. In one illustrative embodiment, a method is disclosed that includes removing a placeholder material of a first gate electrode structure and a second gate electrode structure, and forming a first work function adjusting material layer in the first and second gate electrode structures, wherein the first work function adjusting material layer includes a tantalum nitride layer. The method further includes removing a portion of the first work function adjusting material layer from the second gate electrode structure by using the tantalum nitride layer as an etch stop layer, removing the tantalum nitride layer by performing a wet chemical etch process, and forming a second work function adjusting material layer in the second gate electrode structure and above a non-removed portion of the first work function adjusting material layer in the first gate electrode structure.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 14, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Markus Lenski, Klaus Hempel, Vivien Schroeder, Robert Binder, Joachim Metzger
  • Patent number: 8383500
    Abstract: In a replacement gate approach, one work function metal may be provided in an early manufacturing stage, i.e., upon depositing the gate layer stack, thereby reducing the number of deposition steps required in a later manufacturing stage. Consequently, the further work function metal and the electrode metal may be filled into the gate trenches on the basis of superior process conditions compared to conventional replacement gate approaches.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 26, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Gerd Marxsen, Joachim Metzger, Robert Binder, Markus Lenski
  • Patent number: 8367495
    Abstract: During the formation of sophisticated gate electrode structures, a replacement gate approach may be applied in which plasma assisted etch processes may be avoided. To this end, one of the gate electrode structures may receive an intermediate etch stop liner, which may allow the replacement of the placeholder material and the adjustment of the work function in a later manufacturing stage. The intermediate etch stop liner may not negatively affect the gate patterning sequence.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: February 5, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sven Beyer, Markus Lenski, Richard Carter, Klaus Hempel
  • Patent number: 8357573
    Abstract: Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: January 22, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Vassilios Papageorgiou