Patents by Inventor Markus Lenski

Markus Lenski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7763505
    Abstract: By appropriately adapting the length direction and width directions of transistor devices with respect to the crystallographic orientation of the semiconductor material such that identical vertical and horizontal growth planes upon re-crystallizing amorphized portions are obtained, the number of corresponding stacking faults may be significantly reduced. Hence, transistor elements with extremely shallow PN junctions may be formed on the basis of pre-amorphization implantation processes while substantially avoiding any undue side effects typically obtained in conventional techniques due to stacking faults.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: July 27, 2010
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Gehring, Markus Lenski, Jan Hoentschel, Thorsten Kammler
  • Patent number: 7754556
    Abstract: By recessing portions of the drain and source areas on the basis of a spacer structure, the subsequent implantation process for forming the deep drain and source regions may result in a moderately high dopant concentration extending down to the buried insulating layer of an SOI transistor. Furthermore, the spacer structure maintains a significant amount of a strained semiconductor alloy with its original thickness, thereby providing an efficient strain-inducing mechanism. By using sophisticated anneal techniques, undue lateral diffusion may be avoided, thereby allowing a reduction of the lateral width of the respective spacers and thus a reduction of the length of the transistor devices. Hence, enhanced charge carrier mobility in combination with reduced junction capacitance may be accomplished on the basis of reduced lateral dimensions.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: July 13, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Markus Lenski, Andreas Gehring
  • Patent number: 7754555
    Abstract: By forming a stressed semiconductor material in a gate electrode, a biaxial tensile strain may be induced in the channel region, thereby significantly increasing the charge carrier mobility. This concept may be advantageously combined with additional strain-inducing sources, such as embedded strained semiconductor materials in the drain and source regions, thereby providing the potential for enhancing transistor performance without contributing to process complexity.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: July 13, 2010
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Gehring, Ralf Van Bentum, Markus Lenski
  • Publication number: 20100164093
    Abstract: By providing heat dissipation elements or heat pipes in temperature critical areas of a semiconductor device, enhanced performance, reliability and packing density may be achieved. The heat dissipation elements may be formed on the basis of standard manufacturing techniques and may be positioned in close proximity to individual transistor elements and/or may be used for shielding particular circuit portions.
    Type: Application
    Filed: December 21, 2009
    Publication date: July 1, 2010
    Inventors: Anthony Mowry, David Farber, Fred Hause, Markus Lenski
  • Patent number: 7745334
    Abstract: By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 29, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Patrick Press, Karla Romero, Martin Trentzsch, Karsten Wieczorek, Thomas Feudel, Markus Lenski, Rolf Stephan
  • Patent number: 7745337
    Abstract: A method that includes forming a gate of a semiconductor device on a substrate, and etching sidewall spacers on sides of the gate to provide a proximity value, where the proximity value is defined as a distance between the gate and an edge of a performance-enhancing region. The sidewall spacers are used to define the edge of the region during formation of the region in the substrate. The method also includes pre-cleaning the gate and the substrate in preparation for formation of the region, where the etching and the pre-cleaning are performed in a continuous vacuum.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: June 29, 2010
    Assignee: Globalfoundries Inc.
    Inventors: David G. Farber, Fred Hause, Markus Lenski, Anthony C. Mowry
  • Publication number: 20100155727
    Abstract: By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Inventors: ANTHONY MOWRY, Casey Scott, Vassilios Papageorgiou, Andy Wei, Markus Lenski, Andreas Gehring
  • Patent number: 7713763
    Abstract: By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: May 11, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Anthony Mowry, Casey Scott, Vassilios Papageorgiou, Andy Wei, Markus Lenski, Andreas Gehring
  • Publication number: 20100078689
    Abstract: A strain-inducing semiconductor alloy may be formed on the basis of cavities which may have a non-rectangular shape, which may be maintained even during corresponding high temperature treatments by providing an appropriate protection layer, such as a silicon dioxide material. Consequently, a lateral offset of the strain-inducing semiconductor material may be reduced, while nevertheless providing a sufficient thickness of corresponding offset spacers during the cavity etch process, thereby preserving gate electrode integrity. For instance, P-channel transistors may have a silicon/germanium alloy with a hexagonal shape, thereby significantly enhancing the overall strain transfer efficiency.
    Type: Application
    Filed: September 2, 2009
    Publication date: April 1, 2010
    Inventors: Stephan Kronholz, Markus Lenski, Andy Wei, Andreas Ott
  • Publication number: 20090286389
    Abstract: A method that includes forming a gate of a semiconductor device on a substrate, and etching sidewall spacers on sides of the gate to provide a proximity value, where the proximity value is defined as a distance between the gate and an edge of a performance-enhancing region. The sidewall spacers are used to define the edge of the region during formation of the region in the substrate. The method also includes pre-cleaning the gate and the substrate in preparation for formation of the region, where the etching and the pre-cleaning are performed in a continuous vacuum.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Applicant: Advanced Micro Devices, Inc.
    Inventors: David G. Farber, Fred Hause, Markus Lenski, Anthony C. Mowry
  • Publication number: 20090197381
    Abstract: A selective stress memorization technique is disclosed in which the creation of tensile strain may be accomplished without additional photolithography steps by using an implantation mask or any other mask required during a standard manufacturing flow, or by providing a patterned cap layer for a strained re-crystallization of respective drain and source areas. In still other aspects, additional anneal steps may be used for selectively creating a crystalline state and a non-crystalline state prior to the re-crystallization on the basis of a cap layer. Thus, enhanced strain may be obtained in one type of transistor while not substantially negatively affecting the other type of transistor without requiring additional photolithography steps.
    Type: Application
    Filed: July 24, 2008
    Publication date: August 6, 2009
    Inventors: Markus Lenski, Frank Wirbeleit, Anthony Mowry
  • Publication number: 20090166618
    Abstract: By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
    Type: Application
    Filed: June 3, 2008
    Publication date: July 2, 2009
    Inventors: Anthony Mowry, Casey Scott, Vassilios Papageorgiou, Andy Wei, Markus Lenski, Andreas Gehring
  • Patent number: 7528026
    Abstract: By consuming a surface portion of polysilicon material or silicon material after implantation and prior to activation of dopants, contaminants may be efficiently removed, thereby significantly enhancing the process uniformity during a subsequent silicidation process. Hence, the defect rate during the silicidation process, for instance “missing silicide” defects, may be significantly reduced, thereby also enhancing the reliability of static RAM cells.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: May 5, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Markus Lenski, Ralf Van Bentum, Ekkehard Pruefer
  • Publication number: 20090108295
    Abstract: By selectively modifying the spacer width, for instance, by reducing the spacer width on the basis of implantation masks, an individual adaptation of dopant profiles may be achieved without unduly contributing to the overall process complexity. For example, in sophisticated integrated circuits, the performance of transistors of the same or different conductivity type may be individually adjusted by providing different sidewall spacer widths on the basis of an appropriate masking regime.
    Type: Application
    Filed: April 24, 2008
    Publication date: April 30, 2009
    Inventors: Anthony Mowry, Markus Lenski, Guido Koerner, Ralf Otterbach
  • Publication number: 20090108415
    Abstract: By forming an intermediate etch stop material or by appropriately positioning an additional etch stop material in a spacer structure of a polysilicon line, the probability of exposing a shallow doped region of an active semiconductor region during a critical contact etch step for forming rectangular contacts may be significantly reduced. Thus, leakage current, which may conventionally be created by etching into shallow doped regions during the contact etch step, may be reduced.
    Type: Application
    Filed: April 22, 2008
    Publication date: April 30, 2009
    Inventors: Markus LENSKI, Stephan KRUEGEL, Andreas GEHRING
  • Publication number: 20090001484
    Abstract: By recessing portions of the drain and source areas on the basis of a spacer structure, the subsequent implantation process for forming the deep drain and source regions may result in a moderately high dopant concentration extending down to the buried insulating layer of an SOI transistor. Furthermore, the spacer structure maintains a significant amount of a strained semiconductor alloy with its original thickness, thereby providing an efficient strain-inducing mechanism. By using sophisticated anneal techniques, undue lateral diffusion may be avoided, thereby allowing a reduction of the lateral width of the respective spacers and thus a reduction of the length of the transistor devices. Hence, enhanced charge carrier mobility in combination with reduced junction capacitance may be accomplished on the basis of reduced lateral dimensions.
    Type: Application
    Filed: February 7, 2008
    Publication date: January 1, 2009
    Inventors: Thomas Feudel, Markus Lenski, Andreas Gehring
  • Publication number: 20090001371
    Abstract: A technique is presented which provides for a selective pre-amorphization of source/drain regions of a transistor while preventing pre-amorphization of a gate electrode of the transistor. Illustrative embodiments include the formation of a pre-amorphization implant blocking material over the gate electrode. Further illustrative embodiments include inducing a strain in a channel region by use of various stressors.
    Type: Application
    Filed: February 5, 2008
    Publication date: January 1, 2009
    Inventors: Anthony Mowry, Markus Lenski, Andy Wei, Roman Boschke
  • Patent number: 7354838
    Abstract: By removing an outer spacer, used for the formation of highly complex lateral dopant profiles, prior to the formation of metal silicide, a high degree of process compatibility with conventional processes is obtained, while at the same time a contact liner layer may be positioned more closely to the channel region, thereby allowing a highly efficient stress transfer mechanism for creating a corresponding strain in the channel region.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 8, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thorsten Kammler, Andy Wei, Markus Lenski
  • Publication number: 20080081403
    Abstract: By appropriately adapting the length direction and width directions of transistor devices with respect to the crystallographic orientation of the semiconductor material such that identical vertical and horizontal growth planes upon re-crystallizing amorphized portions are obtained, the number of corresponding stacking faults may be significantly reduced. Hence, transistor elements with extremely shallow PN junctions may be formed on the basis of pre-amorphization implantation processes while substantially avoiding any undue side effects typically obtained in conventional techniques due to stacking faults.
    Type: Application
    Filed: April 25, 2007
    Publication date: April 3, 2008
    Inventors: Andreas Gehring, Markus Lenski, Jan Hoentschel, Thorsten Kammler
  • Publication number: 20080081471
    Abstract: By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
    Type: Application
    Filed: April 18, 2007
    Publication date: April 3, 2008
    Inventors: Patrick Press, Karla Romero, Martin Trentzsch, Karsten Wieczorek, Thomas Feudel, Markus Lenski, Rolf Stephan