Patents by Inventor Martin Poelzl

Martin Poelzl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10438945
    Abstract: A method of manufacturing a semiconductor die includes: forming a power HEMT (high-electron-mobility transistor) in a III-nitride semiconductor substrate, the power HEMT having a gate, a source and a drain; monolithically integrating a first gate driver HEMT with the power HEMT in the III-nitride semiconductor substrate, the first gate driver HEMT having a gate, a source and a drain and logically forming part of a driver; and electrically connecting the first gate driver HEMT to the gate of the power HEMT so that the first gate driver HEMT is operable to turn the power HEMT off or on responsive to an externally-generated control signal received from the driver or other device.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 8, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Vielemeyer, Walter Rieger, Martin Pölzl, Gerhard Nöbauer
  • Publication number: 20190267362
    Abstract: In an embodiment, a semiconductor package includes a first transistor device having first and second opposing surfaces, a first power electrode and a control electrode arranged on the first surface and a second power electrode arranged on the second surface. A first metallization structure arranged on the first surface includes a plurality of outer contact pads which includes a protective layer of solder, Ag or Sn. A second metallization structure is arranged on the second surface. A conductive connection extending from the first surface to the second surface electrically connects the second power electrode to an outer contact pad of the first metallization structure. A first epoxy layer arranged on side faces and on the first surface of the transistor device includes openings which define a lateral size of the plurality of outer contact pads and a package footprint.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 29, 2019
    Inventors: Thomas Feil, Danny Clavette, Paul Ganitzer, Martin Poelzl, Carsten von Koblinski
  • Publication number: 20190229198
    Abstract: A semiconductor device includes a trench extending into a first main surface of a semiconductor substrate, and a gate electrode and a gate dielectric in the trench. The gate dielectric separates the gate electrode from the semiconductor substrate. A first region having a first conductivity type is formed in the semiconductor substrate at the first surface adjacent the trench. A second region having a second conductivity type is formed in the semiconductor substrate below the first region adjacent the trench. A third region having the first conductivity type is formed in the semiconductor substrate below the second region adjacent the trench. A contact opening in the semiconductor substrate extends into the second region. An electrically insulative spacer is disposed on sidewalls of the semiconductor substrate formed by the contact opening, and an electrically conductive material in the contact opening adjoins the electrically insulative spacer on the sidewalls.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Inventors: Wei-Chun Huang, Martin Poelzl, Thomas Feil, Maximilian Roesch
  • Patent number: 10355087
    Abstract: A semiconductor device includes a transistor in a semiconductor substrate having a main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, a gate electrode, and a gate dielectric adjacent to the gate electrode. The gate electrode is disposed adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the main surface between the source region and the drain region. The gate dielectric has a thickness that varies at different positions of the gate electrode.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: July 16, 2019
    Assignee: Infineon Technologies AG
    Inventors: Martin Vielemeyer, Andreas Meiser, Till Schloesser, Franz Hirler, Martin Poelzl
  • Patent number: 10304935
    Abstract: A semiconductor device includes a semiconductor substrate comprising a main surface and a gate electrode in a trench between neighboring semiconductor mesas. The gate electrode is electrically insulated from the neighboring semiconductor mesas by a dielectric layer. The semiconductor device further includes a conductor arranged, at least partially, between neighboring dielectric contact spacers. The conductor has a conductivity greater than a conductivity of the gate electrode. An interface between the conductor and the gate electrode extends along the gate electrode.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: May 28, 2019
    Assignee: Infineon Technologies Austria AG
    Inventor: Martin Poelzl
  • Patent number: 10249723
    Abstract: A semiconductor device includes a semiconductor body having a main surface and an active region surrounded by a non-active region. A trench extends from the main surface into the semiconductor body. The trench has a stripe configuration and extends laterally within the active region. A first electrode and a first insulator are in the trench. The first insulator insulates the first electrode from the semiconductor body. The first electrode is recessed in the trench and has a planar surface extending generally parallel with and below the main surface of the semiconductor body so as to define a well in the trench that is laterally confined by the first insulator. A second insulator is on the planar surface. A second electrode is within the well of the trench, and the second insulator insulates the second electrode from the first electrode.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: April 2, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Heimo Hofer, Martin Poelzl, Maximilian Roesch, Britta Wutte
  • Publication number: 20190088550
    Abstract: In an embodiment, a method includes forming at least one trench in non-device regions of a first surface of a semiconductor wafer, the non-device regions being arranged between component positions, the component positions including device regions and a first metallization structure, applying a first polymer layer to the first surface of a semiconductor wafer such that the trenches and edge regions of the component positions are covered with the first polymer layer and such that at least a portion of the first metallization structure is uncovered by the first polymer layer, removing portions of a second surface of the semiconductor wafer, the second surface opposing the first surface, revealing portions of the first polymer layer in the non-device regions and producing a worked second surface and inserting a separation line through the first polymer layer in the non-device regions to form a plurality of separate semiconductor dies.
    Type: Application
    Filed: February 27, 2017
    Publication date: March 21, 2019
    Inventors: Paul Ganitzer, Carsten von Koblinski, Thomas Feil, Gerald Lackner, Jochen Mueller, Martin Poelzl, Tobias Polster
  • Publication number: 20190035915
    Abstract: Disclosed is a transistor device. The transistor device includes: in a semiconductor body, a drift region, a body region adjoining the drift region, and a source region separated from the drift region by the body region; a gate electrode dielectrically insulated from the body region by a gate dielectric; a source electrode electrically connected to the source region; at least one field electrode dielectrically insulated from the drift region by a field electrode dielectric; and a rectifier element coupled between the source electrode and the field electrode. The field electrode and the field electrode dielectric are arranged in a first trench that extends from a first surface of the semiconductor body into the semiconductor body. The rectifier element is integrated in the first trench in a rectifier region that is adjacent at least one of the source region and the body region.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 31, 2019
    Inventors: Ralf Siemieniec, Robert Haase, Gerhard Noebauer, Martin Poelzl
  • Patent number: 10181511
    Abstract: A semiconductor device comprises a gate electrode in a trench in a semiconductor body. The gate electrode comprises a plurality of gate segments disposed along an extension direction of the trench, the gate segments being connected to neighboring gate segments by means of connection elements. A distance between adjacent gate segments is equal to or smaller than 0.5*L, wherein L denotes a length of each of the gate segments, the length being measured along the extension direction of the trench.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: January 15, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Poelzl, Georg Ehrentraut, Franz Hirler, Maximilian Roesch
  • Patent number: 10121859
    Abstract: First reinforcement stripes are formed on a process surface of a base substrate. A first epitaxial layer covering the first reinforcement stripes is formed on the first process surface. Second reinforcement stripes are formed on the first epitaxial layer. A second epitaxial layer covering the second reinforcement stripes is formed on exposed portions of the first epitaxial layer. Semiconducting portions of transistor cells are formed in or portions of micro electromechanical structures are formed from the second epitaxial layer.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: November 6, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ravi Keshav Joshi, Johannes Baumgartl, Oliver Blank, Oliver Hellmund, Martin Poelzl
  • Patent number: 10068848
    Abstract: A semiconductor chip has a semiconductor body with a bottom side and a top side arranged distant from the bottom side in a vertical direction, an active and a non-active transistor region, a drift region formed in the semiconductor body, a contact terminal for externally contacting the semiconductor chip, and a plurality of transistor cells formed in the semiconductor body. Each of the transistor cells has a first electrode. Each of a plurality of connection lines electrically connects another one of the first electrodes to the contact terminal pad at a connecting location of the respective connection line. Each of the connection lines includes a resistance section formed of a locally increased specific resistance relative to a specific resistance of adjacent semiconductor material or metal of the respective connection line. Each of the connecting locations and each of the resistance sections is arranged in the non-active transistor region.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: September 4, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Noebauer, Ralf Siemieniec, Maximilian Roesch, Martin Poelzl, Michael Hutzler
  • Patent number: 10068975
    Abstract: A semiconductor device includes a semiconductor substrate having a first surface, first and second field plate structures extending in a first direction parallel to the first surface, a plurality of gate electrode structures disposed over the first surface and extending in a second direction parallel to the first surface, the second direction being different than the first direction, and a plurality of source regions and drain regions of a first conductivity type arranged in an alternating manner at the first surface so that a drain region is disposed on one side of a gate electrode structure and a source region is disposed on the other side of the gate electrode structure. The gate electrode structures are disposed between the first and the second field plate structures. The source regions and the drain regions extend in parallel with one another along the second direction.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: September 4, 2018
    Assignee: Infineon Technologies Austria AG
    Inventor: Martin Poelzl
  • Publication number: 20180247820
    Abstract: A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Juergen Steinbrenner, Markus Kahn, Helmut Schoenherr, Ravi Keshav Joshi, Heimo Hofer, Martin Poelzl, Harald Huetter
  • Patent number: 9978862
    Abstract: A semiconductor die includes a semiconductor substrate having a first region and a second region isolated from the first region. A power transistor disposed in the first region of the semiconductor substrate has a gate, a source and a drain. A gate driver transistor disposed in the second region of the semiconductor substrate has a gate, a source and a drain. The gate driver transistor is electrically connected to the gate of the power transistor and operable to turn the power transistor off or on responsive to an externally-generated control signal applied to the gate of the gate driver transistor. A first contact pad is electrically connected to the source of the power transistor, and a second contact pad is electrically connected to the drain of the power transistor. A third contact pad is electrically connected to the gate of the gate driver transistor for receiving the externally-generated control signal.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: May 22, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Vielemeyer, Walter Rieger, Martin Pölzl, Gerhard Nöbauer
  • Publication number: 20180138278
    Abstract: A semiconductor device includes a semiconductor body having a main surface and an active region surrounded by a non-active region. A trench extends from the main surface into the semiconductor body. The trench has a stripe configuration and extends laterally within the active region. A first electrode and a first insulator are in the trench. The first insulator insulates the first electrode from the semiconductor body. The first electrode is recessed in the trench and has a planar surface extending generally parallel with and below the main surface of the semiconductor body so as to define a well in the trench that is laterally confined by the first insulator. A second insulator is on the planar surface. A second electrode is within the well of the trench, and the second insulator insulates the second electrode from the first electrode.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 17, 2018
    Inventors: Heimo Hofer, Martin Poelzl, Maximilian Roesch, Britta Wutte
  • Publication number: 20180138120
    Abstract: A semiconductor device includes a semiconductor layer with a thickness of at most 50 ?m. A first metallization structure is disposed on a first surface of the semiconductor layer. The first metallization structure includes a first copper region with a first thickness. A second metallization structure is disposed on a second surface of the semiconductor layer opposite to the first surface. The second metallization structure includes a second copper region with a second thickness. The total thickness, which is the sum of the first thickness and the second thickness, deviates from the thickness of the semiconductor layer by not more than 20% and a difference between the first thickness and the second thickness is not more than 20% of the total thickness.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 17, 2018
    Inventors: Paul Ganitzer, Martin Poelzl
  • Patent number: 9935055
    Abstract: A method of manufacturing a semiconductor device includes forming a separation trench into a first main surface of a semiconductor substrate and removing substrate material from a second main surface of the semiconductor substrate, so as to thin the substrate to a thickness of less than 100 ?m, the second main surface being opposite to the first main surface, so as to uncover a bottom side of the trench. Additional methods of manufacturing semiconductor devices are provided.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: April 3, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Andreas Meiser, Markus Zundel, Martin Poelzl, Paul Ganitzer, Georg Ehrentraut
  • Patent number: 9923072
    Abstract: A semiconductor component includes a semiconductor body having a surface and a cutout in the semiconductor body. The cutout extends from the surface of the semiconductor body into the semiconductor body in a direction perpendicular to the surface. The cutout has a base and at least one sidewall. The component further includes a layer on the surface of the semiconductor body and in the cutout. The layer forms a well above the cutout. The well has a well base, a well edge and at least one well sidewall. The at least one well sidewall forms an angle ? in the range of 20° to 80° with respect to the surface of the semiconductor body. The layer has at least one edge which, proceeding from the well edge, extends in the direction of the surface of the semiconductor body.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 20, 2018
    Assignee: Infineon Technologies Austria AG
    Inventor: Martin Poelzl
  • Patent number: 9917160
    Abstract: A semiconductor device includes a semiconductor body, having a first surface, a gate electrode structure, which includes polycrystalline silicon, of an IGFET in a first trench extending from the first surface into the semiconductor body. The device also includes a semiconductor element, which is different from the gate electrode structure of the IGFET and includes polycrystalline silicon, in a second trench extending from the first surface into the semiconductor body, wherein the polycrystalline silicon of the IGFET and of the semiconductor element different therefrom ends below a top side of an insulation layer adjoining the first surface of the semiconductor body.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: March 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Andrew Christopher Graeme Wood, Oliver Blank, Martin Poelzl, Martin Vielemeyer
  • Publication number: 20180047719
    Abstract: A method of manufacturing a semiconductor die includes: forming a power HEMT (high-electron-mobility transistor) in a III-nitride semiconductor substrate, the power HEMT having a gate, a source and a drain; monolithically integrating a first gate driver HEMT with the power HEMT in the III-nitride semiconductor substrate, the first gate driver HEMT having a gate, a source and a drain and logically forming part of a driver; and electrically connecting the first gate driver HEMT to the gate of the power HEMT so that the first gate driver HEMT is operable to turn the power HEMT off or on responsive to an externally-generated control signal received from the driver or other device.
    Type: Application
    Filed: September 19, 2017
    Publication date: February 15, 2018
    Inventors: Martin Vielemeyer, Walter Rieger, Martin Pölzl, Gerhard Nöbauer