Patents by Inventor Masahiko Higashi

Masahiko Higashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7736953
    Abstract: A semiconductor memory includes first and second source regions that are formed in a semiconductor substrate and run in orthogonal directions. The first and second source regions are diffused regions and are electrically connected to each other at crossing portions thereof. The semiconductor device may further include drain regions formed in the semiconductor substrate, bit lines that run in the direction in which the second source region runs, and a source line formed above the second source region, wherein a contact between the source line and the second source region is aligned with contacts between the bit lines and drain regions formed in the semiconductor substrate.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: June 15, 2010
    Assignee: Spansion LLC
    Inventors: Hiroshi Murai, Masahiko Higashi
  • Publication number: 20100109070
    Abstract: A device and method employing a polyoxide-based charge trapping component. A charge trapping component is patterned by etching a layered stack that includes a tunneling layer positioned on a substrate, a charge trapping layer positioned on the tunneling layer, and an amorphous silicon layer positioned on the charge trapping layer. An oxidation process grows a gate oxide layer from the substrate and converts the amorphous silicon layer into a polyoxide layer.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Applicant: Spansion LLC
    Inventor: Masahiko Higashi
  • Publication number: 20090325354
    Abstract: The present invention relates to a semiconductor device that includes a semiconductor substrate (10) having source/drain diffusion regions (14) formed therein and control gates (20) formed thereon, with grooves (18) being formed on the surface of the semiconductor substrate (10) and being located below the control gates (20) and between the source/drain diffusion regions (14). The grooves (18) are separated from the source/drain diffusion regions (14), thereby increasing the effective channel length to maintain a constant channel length for charge accumulation while enabling the manufacture of smaller memory cells. The present invention also provides a method of manufacturing the semiconductor device.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 31, 2009
    Inventor: Masahiko Higashi
  • Publication number: 20090297917
    Abstract: The present invention provides a heat-resistant alloy member which hardly causes external diffusion of Cr, an alloy member for a fuel cell, a collector member for a fuel cell, a cell stack, and a fuel cell apparatus. The surface of a collector base material 201 containing Cr is coated with a Cr diffusion preventing layer 203 made of an oxide containing Zn and Mn and a coating layer 202 made of an oxide containing Zn is formed on the surface of the Cr diffusion preventing layer 203. The coating layer 202 preferably contains at least one kind of Al and Fe as a trivalent or higher valent positive metal element.
    Type: Application
    Filed: October 27, 2006
    Publication date: December 3, 2009
    Applicant: Kyocera Corporation
    Inventors: Masahiko Higashi, Tetsuro Fujimoto
  • Patent number: 7626227
    Abstract: A semiconductor device is provided which includes a gate electrode (30) provided on a semiconductor substrate (10), an oxide/nitride/oxide (ONO) film (18) that is formed between the gate electrode (30) and the semiconductor substrate (10) and has a charge storage region (14) under the gate electrode (30), and a bit line (28) that is buried in the semiconductor substrate (10) and includes a low concentration diffusion region (24), a high concentration diffusion region (22) that is formed in the center of the low concentration diffusion region (24) and has a higher impurity concentration than the low concentration region, a source region, and a drain region. The semiconductor device can improve the source-drain breakdown voltage of the transistor while suppressing fluctuation of electrical characteristics or junction current between the bit line (28) and the semiconductor substrate (10).
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Spansion LLC
    Inventors: Hiroaki Kouketsu, Masahiko Higashi
  • Publication number: 20090237990
    Abstract: The present invention provides a semiconductor device and a method for manufacturing thereof. The semiconductor device includes bit lines disposed in a semiconductor substrate, a first ONO disposed between the bit lines on the semiconductor substrate, and a second ONO film disposed on each of the bit lines. The film thickness of a first silicon nitride film in the first ONO film is larger than the film thickness of a second silicon nitride film in the second ONO film.
    Type: Application
    Filed: September 22, 2008
    Publication date: September 24, 2009
    Inventors: Hiroshi MURAI, Masahiko Higashi
  • Publication number: 20090209076
    Abstract: A method for manufacturing a semiconductor device which includes steps of forming a dummy layer on a semiconductor substrate, forming a groove 12 in the semiconductor substrate while using the dummy layer as a mask, forming a tunnel insulating film and a trap layer to cover an inner surface of the groove and the dummy layer, eliminating the trap layer formed above the upper surface and at the sides of the dummy layer, and forming a top insulating film to cover a remaining trap layer and the exposed tunnel insulating film.
    Type: Application
    Filed: August 18, 2008
    Publication date: August 20, 2009
    Inventor: Masahiko HIGASHI
  • Patent number: 7573091
    Abstract: The present invention relates to a semiconductor device that includes a semiconductor substrate (10) having source/drain diffusion regions (14) formed therein and control gates (20) formed thereon, with grooves (18) being formed on the surface of the semiconductor substrate (10) and being located below the control gates (20) and between the source/drain diffusion regions (14). The grooves (18) are separated from the source/drain diffusion regions (14), thereby increasing the effective channel length to maintain a constant channel length for charge accumulation while enabling the manufacture of smaller memory cells. The present invention also provides a method of manufacturing the semiconductor device.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: August 11, 2009
    Assignee: Spansion LLC
    Inventor: Masahiko Higashi
  • Publication number: 20090184427
    Abstract: A method for manufacturing a semiconductor device, the method including: forming a bit line in a semiconductor substrate; forming a plurality of word lines which intersect with the bit line at predetermined intervals on the semiconductor substrate; eliminating a portion of the plurality of word lines; forming an interlayer insulating film on the semiconductor substrate; and forming a metal plug which penetrates through the interlayer insulating film and is coupled to the bit line in a region where the portion of the plurality of word lines was eliminated.
    Type: Application
    Filed: July 24, 2008
    Publication date: July 23, 2009
    Inventors: Naofumi TAKAHATA, Masahiko HIGASHI, Yukihiro UTSUNO
  • Patent number: 7537987
    Abstract: In a semiconductor device manufacturing method of the invention, a metal film, for forming a gate electrode, is formed on a gate insulating film. Subsequently, when the metal film is processed, part of the metal film is removed by a wet etching process using a given chemical liquid.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 26, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masahiko Higashi, Satoshi Kume, Jiro Yugami, Shinichi Yamanari, Takahiro Maruyama, Itaru Kanno
  • Publication number: 20090085213
    Abstract: A semiconductor memory device employs a SONOS type memory architecture and includes a bit line diffusion layer in a shallow trench groove in which a conductive film is buried. This makes it possible to decrease the resistivity of the bit line diffusion layer without enlarging the area on the main surface of the semiconductor substrate, and to fabricate the semiconductor memory device having stable electric characteristics without enlarging the cell area. The bit line is formed by implanting ions into the sidewall of Si3N4.
    Type: Application
    Filed: August 27, 2008
    Publication date: April 2, 2009
    Inventors: Masahiko HIGASHI, Hiroyuki Nansei
  • Publication number: 20090026570
    Abstract: Methods and structures for discharging plasma formed during the fabrication of semiconductor device are disclosed. The semiconductor device includes a wordline, a common ground line and a fuse structure for electrically coupling the wordline and the common ground line until a break signal is applied via the fuse structure.
    Type: Application
    Filed: December 20, 2007
    Publication date: January 29, 2009
    Inventors: Masahiko Higashi, Naoki Takeguchi
  • Patent number: 7479427
    Abstract: A semiconductor memory device employs a SONOS type memory architecture and includes a bit line diffusion layer in a shallow trench groove in which a conductive film is buried. This makes it possible to decrease the resistivity of the bit line diffusion layer without enlarging the area on the main surface of the semiconductor substrate, and to fabricate the semiconductor memory device having stable electric characteristics without enlarging the cell area. The bit line is formed by implanting ions into the sidewall of Si3N4.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: January 20, 2009
    Assignee: Spansion LLC
    Inventors: Masahiko Higashi, Hiroyuki Nansei
  • Publication number: 20080265309
    Abstract: After an ONO film in which a silicon nitride film (22) formed by a plasma nitriding method using a plasma processor having a radial line slot antenna is sandwiched by silicon oxide films (21), (23), a bit line diffusion layer (17) is formed in a memory cell array region (11) by an ion implantation as a resist pattern (16) taken as a mask, then lattice defects are given to the silicon nitride film (22) by a further ion implantation. Accordingly, a highly reliable semiconductor memory device can be realized, in which a high quality nitride film is formed in a low temperature condition, in addition, the nitride film can be used as a charge trap film having a charge capture function sufficiently adaptable for a miniaturization and a high integration which are recent demands.
    Type: Application
    Filed: June 20, 2008
    Publication date: October 30, 2008
    Applicant: SPANSION LLC
    Inventors: Masahiko Higashi, Manabu Nakamura, Kentaro Sera, Hiroyuki Nansei, Yukihiro Utsuno, Hideo Takagi, Tatsuya Kajita
  • Patent number: 7410857
    Abstract: After an ONO film in which a silicon nitride film (22) formed by a plasma nitriding method using a plasma processor having a radial line slot antenna is sandwiched by silicon oxide films (21), (23), a bit line diffusion layer (17) is formed in a memory cell array region (11) by an ion implantation as a resist pattern (16) taken as a mask, then lattice defects are given to the silicon nitride film (22) by a further ion implantation. Accordingly, a highly reliable semiconductor memory device can be realized, in which a high quality nitride film is formed in a low temperature condition, in addition, the nitride film can be used as a charge trap film having a charge capture function sufficiently adaptable for a miniaturization and a high integration which are recent demands.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 12, 2008
    Assignee: Spansion LLC.
    Inventors: Masahiko Higashi, Manabu Nakamura, Kentaro Sera, Hiroyuki Nansei, Yukihiro Utsuno, Hideo Takagi, Tatsuya Kajita
  • Publication number: 20070262374
    Abstract: After an ONO film in which a silicon nitride film (22) formed by a plasma nitriding method using a plasma processor having a radial line slot antenna is sandwiched by silicon oxide films (21), (23), a bit line diffusion layer (17) is formed in a memory cell array region (11) by an ion implantation as a resist pattern (16) taken as a mask, then lattice defects are given to the silicon nitride film (22) by a further ion implantation. Accordingly, a highly reliable semiconductor memory device can be realized, in which a high quality nitride film is formed in a low temperature condition, in addition, the nitride film can be used as a charge trap film having a charge capture function sufficiently adaptable for a miniaturization and a high integration which are recent demands.
    Type: Application
    Filed: July 23, 2007
    Publication date: November 15, 2007
    Applicant: SPANSION LLC
    Inventors: Masahiko Higashi, Manabu Nakamura, Kentaro Sera, Hiroyuki Nansei, Yukihiro Utsuno, Hideo Takagi, Tatsuya Kajita
  • Patent number: 7253046
    Abstract: After an ONO film in which a silicon nitride film (22) formed by a plasma nitriding method using a plasma processor having a radial line slot antenna is sandwiched by silicon oxide films (21), (23), a bit line diffusion layer (17) is formed in a memory cell array region (11) by an ion implantation as a resist pattern (16) taken as a mask, then lattice defects are given to the silicon nitride film (22) by a further ion implantation. Accordingly, a highly reliable semiconductor memory device can be realized, in which a high quality nitride film is formed in a low temperature condition, in addition, the nitride film can be used as a charge trap film having a charge capture function sufficiently adaptable for a miniaturization and a high integration which are recent demands.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: August 7, 2007
    Assignee: Spansion LLC.
    Inventors: Masahiko Higashi, Manabu Nakamura, Kentaro Sera, Hiroyuki Nansei, Yukihiro Utsuno, Hideo Takagi, Tatsuya Kajita
  • Patent number: 7250391
    Abstract: The cleaning composition for removing resists includes a salt of hydrofluoric acid and a base not containing a metal (A component), a water-soluble organic solvent (B1 component), at least one organic acid or inorganic acid (C component), water (D component), and, optionally, an ammonium salt (E1 component), and having a pH 4-8. Thus, in manufacturing a semiconductor device, such as a copper interconnecting process, efficiency of removing resist residue and other etching residue after etching or ashing is improved, and corrosion resistance of a copper and an insulating film is also improved.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: July 31, 2007
    Assignees: Renesas Technology Corp., Matsushita Electric Industrial Co., Ltd., EKC Technology K.K.
    Inventors: Itaru Kanno, Yasuhiro Asaoka, Masahiko Higashi, Yoshiharu Hidaka, Etsuro Kishio, Tetsuo Aoyama, Tomoko Suzuki, Toshitaka Hiraga, Toshihiko Nagai
  • Publication number: 20070099406
    Abstract: In a semiconductor device manufacturing method of the invention, a metal film, for forming a gate electrode, is formed on a gate insulating film. Subsequently, when the metal film is processed, part of the metal film is removed by a wet etching process using a given chemical liquid.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 3, 2007
    Applicant: Renesas Technology Corp.
    Inventors: Masahiko Higashi, Satoshi Kume, Jiro Yugami, Shinichi Yamanari, Takahiro Maruyama, Itaru Kanno
  • Publication number: 20070045720
    Abstract: A semiconductor device is provided which includes a gate electrode (30) provided on a semiconductor substrate (10), an oxide/nitride/oxide (ONO) film (18) that is formed between the gate electrode (30) and the semiconductor substrate (10) and has a charge storage region (14) under the gate electrode (30), and a bit line (28) that is buried in the semiconductor substrate (10) and includes a low concentration diffusion region (24), a high concentration diffusion region (22) that is formed in the center of the low concentration diffusion region (24) and has a higher impurity concentration than the low concentration region, a source region, and a drain region. The semiconductor device can improve the source-drain breakdown voltage of the transistor while suppressing fluctuation of electrical characteristics or junction current between the bit line (28) and the semiconductor substrate (10).
    Type: Application
    Filed: April 27, 2006
    Publication date: March 1, 2007
    Inventors: Hiroaki Kouketsu, Masahiko Higashi