Patents by Inventor Masaru Senoo

Masaru Senoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160172453
    Abstract: A semiconductor layer of a reverse conducting insulated gate bipolar transistor is provided with a drift region of a first conductive type, a body region of a second conductive type that is disposed above the drift region, and a barrier region of the first conductive type that is disposed in the body region and electrically connects to the emitter electrode via a pillar member which extends from the one of main surfaces of the semiconductor layer. The barrier region is not contact with a side surface of the insulated trench gate.
    Type: Application
    Filed: October 28, 2015
    Publication date: June 16, 2016
    Inventors: Yasuhiro HIRABAYASHI, Hiroshi HOSOKAWA, Yoshifumi YASUDA, Akitaka SOENO, Masaru SENOO, Satoru MACHIDA, Yusuke YAMASHITA
  • Publication number: 20160141401
    Abstract: A semiconductor device has emitter regions disposed in at least one cell region in a first inter-trench region, not disposed in a middle inter-trench region, and disposed in at least one cell region in the second inter-trench region. Each of the emitter regions is disposed at a position that is not in contact with first trenches but is in contact with two second trenches defining the corresponding cell region.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 19, 2016
    Inventors: Yasuhiro Hirabayashi, Masaru Senoo
  • Publication number: 20160111529
    Abstract: A semiconductor device includes a semiconductor substrate. Dummy trenches and a grid-structured gate trench located between the dummy trenches are provided in the front surface. An emitter region, a first anode region, a first barrier region, and a first pillar region are provided in a cell region surrounded by the grid-structured gate trench. A drift region, a collector region, and a cathode region are provided in the semiconductor substrate. The first barrier region is an n-type region being in contact with a gate insulating film at a position on the rear surface side of the first anode region. The first pillar region is an n-type region extending along a thickness direction, being in contact with a front surface electrode, connected to the first barrier region, and separated from the gate insulating film.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 21, 2016
    Inventors: Yasuhiro Hirabayashi, Masaru Senoo
  • Patent number: 9276137
    Abstract: A diode is provided with a pillar region formed so as to extend between a barrier region and an anode electrode, contact the barrier region, and made of a first conductivity type semiconductor having a concentration higher than that of the barrier region; and a barrier height adjusting region formed so as to be located between the pillar region and the anode electrode, and contact the pillar region and the anode electrode. The barrier height adjusting region includes at least one component selected from the group consisting of a second conductivity type semiconductor having a concentration lower than that of an anode region, the first conductivity type semiconductor having a concentration lower than that of the pillar region, and an i-type semiconductor. The barrier height adjusting region and the anode electrode are connected through a Schottky junction.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 1, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yusuke Yamashita, Satoru Machida, Jun Saito, Masaru Senoo, Jun Okawara
  • Publication number: 20160035859
    Abstract: An IGBT has an emitter region, a top body region that is formed below the emitter region, a floating region that is formed below the top body region, a bottom body region that is formed below the floating region, a trench, a gate insulating film that covers an inner face of the trench, and a gate electrode that is arranged inside the trench. When a distribution of a concentration of p-type impurities in the top body region and the floating region, which are located below the emitter region, is viewed along a thickness direction of a semiconductor substrate, the concentration of the p-type impurities decreases as a downward distance increases from an upper end of the top body region that is located below the emitter region, and assumes a local minimum value at a predetermined depth in the floating region.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaru SENOO, Kyosuke MIYAGI, Tsuyoshi NISHIWAKI, Jun SAITO
  • Publication number: 20150364541
    Abstract: Provided is a semiconductor device in which movable ions in an insulation layer on a main surface are reduced and dielectric strength is enhanced. A semiconductor device has a plurality of FLRs, an insulation layer, and a semiconductor layer. The plurality of FLRs surrounds, in a plan view of a substrate, an active region in which an element is formed. The insulation layer is provided on the main surface of the semiconductor device and covers the plurality of FLRs. The semiconductor layer is provided in the insulation layer and surrounds the active region in parallel to the FLRs. The semiconductor layer contains impurities at a surface density lower than a surface density that satisfies a RESURF condition. In the plan view, the semiconductor layer overlaps with a part of the region (an inter-ring region) between adjacent FLRs and does not overlap with rest of the inter-ring region.
    Type: Application
    Filed: February 15, 2013
    Publication date: December 17, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru SENOO
  • Patent number: 9190503
    Abstract: An IGBT has an emitter region, a top body region that is formed below the emitter region, a floating region that is formed below the top body region, a bottom body region that is formed below the floating region, a trench, a gate insulating film that covers an inner face of the trench, and a gate electrode that is arranged inside the trench. When a distribution of a concentration of p-type impurities in the top body region and the floating region, which are located below the emitter region, is viewed along a thickness direction of a semiconductor substrate, the concentration of the p-type impurities decreases as a downward distance increases from an upper end of the top body region that is located below the emitter region, and assumes a local minimum value at a predetermined depth in the floating region.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: November 17, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaru Senoo, Kyosuke Miyagi, Tsuyoshi Nishiwaki, Jun Saito
  • Patent number: 9178014
    Abstract: A semiconductor device includes a semiconductor substrate, and a field plate portion formed on a front surface of a non-cell region. The non-cell region includes a plurality of FLR layers. The FLR layers extend in a first direction along a circumference of the cell region. The field plate portion includes: an insulating film; a plurality of first conducting layers each disposed along a corresponding FLR layer; and a plurality of second conducting layers. The second conducting layers are disposed on part of their corresponding FLR layers in an intermittent manner along the corresponding FLR layers. Each of the second conducting layers includes a front surface portion, a first contact portion, and a second contact portion. Any of the first contact portions and the second contact portions are not provided at positions adjacent to the first contact portion and the second contact portion in the second direction.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: November 3, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Senoo
  • Publication number: 20150279953
    Abstract: A semiconductor device is provided with a silicon layer, an upper surface side aluminum layer containing silicon and an insulation film. The upper surface side aluminum layer contacts and is layered on a part of a surface of the silicon layer. The insulation film contacts and is layered on another part of the surface of the silicon layer. The insulation film is adjacent to and contacts the upper surface side aluminum layer. The insulation film includes an insulation film body and a plurality of first nodule segregated portions projecting from the insulation film body toward the upper surface side aluminum layer as seen along a vertical direction relative to the surface of the silicon layer. A corner is formed by a side surface of the insulation film body and a side surface of each of the first nodule segregated portions as seen along the vertical direction.
    Type: Application
    Filed: March 6, 2015
    Publication date: October 1, 2015
    Inventors: Satoru MACHIDA, Yusuke YAMASHITA, Koichi NISHIKAWA, Masaru SENOO, Jun OKAWARA, Yoshifumi YASUDA, Hiroshi HOSOKAWA, Yasuhiro HIRABAYASHI
  • Patent number: 9147758
    Abstract: A semiconductor device includes a front surface electrode, a back surface electrode and a semiconductor substrate in which an IGBT and a diode are formed. An outer peripheral back surface p-type region, an outer peripheral back surface n-type region, and an outer peripheral low concentration n-type region are formed in an outer peripheral region. The outer peripheral back surface n-type region is formed on an end surface side of the semiconductor substrate with respect to the outer peripheral back surface p-type region. The outer peripheral low concentration n-type region separates the outer peripheral back surface p-type region and the outer peripheral back surface n-type region from a contact outer peripheral edge p-type region. A p-type impurity concentration in the outer peripheral back surface p-type region decreases toward the end surface. An n-type impurity concentration in the outer peripheral back surface n-type region increases toward the end surface.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: September 29, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Senoo
  • Publication number: 20150249084
    Abstract: A technology for reducing contact resistance between a semiconductor substrate and an electrode is provided. A provided method for manufacturing a semiconductor device includes: forming an oxide film 62 on a surface 12b of a semiconductor substrate 12 by bringing the surface 12b into contact with ammonia-hydrogen peroxide water mixture; forming a groove 60 on the surface 12b by irradiating light to heat the surface 12b covered with the oxide film 62; removing the oxide film 62 to expose the surface 12b; and forming an electrode 16 on the exposed surface 12b.
    Type: Application
    Filed: February 12, 2015
    Publication date: September 3, 2015
    Inventors: Shuhei Oki, Masaru Senoo
  • Patent number: 9082842
    Abstract: A semiconductor device disclosed herein includes an insulated gate, a main and a sub trench conductors. The main and sub trench conductors are formed in the cell region, and have a conductor that is covered with an insulation film and fills a trench extending in a first direction. The sub trench is located, with respect to the main trench conductor, in a second direction perpendicularly crossing the first direction and extending from the cell region side to the non-cell region. Length of the sub trench conductor in the first direction is shorter than a length of the insulated gate in the first direction. Distance between the main and sub trench conductors is shorter than a distance between the main trench conductor and the insulated gate. At least a part of the sub trench conductor reaches a position deeper than a boundary between the first and second semiconductor regions.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 14, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Hirabayashi, Masaru Senoo
  • Patent number: 9064711
    Abstract: A method for fabricating a semiconductor device in which a lifetime control region can be formed within a predetermined range with high positioning accuracy is provided. In a semiconductor device, an IGBT element region and a diode element region may be formed in one semiconductor substrate. The IGBT element region may include a second conductivity type drift layer and a first conductivity type body layer. The diode element region may include a second conductivity type drift layer and a first conductivity type anode layer. A concentration of heavy metal included in the drift layer of the diode element region may be set higher than a concentration of the heavy metal included in the drift layer of the IGBT element region.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 23, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaru Senoo, Tomoo Yamabuki
  • Publication number: 20150171199
    Abstract: A semiconductor device includes a front surface electrode, a back surface electrode and a semiconductor substrate in which an IGBT and a diode are formed. An outer peripheral back surface p-type region, an outer peripheral back surface n-type region, and an outer peripheral low concentration n-type region are formed in an outer peripheral region. The outer peripheral back surface n-type region is formed on an end surface side of the semiconductor substrate with respect to the outer peripheral back surface p-type region. The outer peripheral low concentration n-type region separates the outer peripheral back surface p-type region and the outer peripheral back surface n-type region from a contact outer peripheral edge p-type region. A p-type impurity concentration in the outer peripheral back surface p-type region decreases toward the end surface. An n-type impurity concentration in the outer peripheral back surface n-type region increases toward the end surface.
    Type: Application
    Filed: December 15, 2014
    Publication date: June 18, 2015
    Inventor: Masaru Senoo
  • Patent number: 9048085
    Abstract: A field plate of a semiconductor device is provided with i) an insulating film that is formed on a surface of the semiconductor substrate, and includes a plurality of first regions, one for each of a plurality of FLR layers, that contact the layers and are arranged at intervals in a radial direction, and a plurality of second regions, one for each of the first regions, that are adjacent to the first regions in the radial direction, and ii) a plurality of first conductive films that are formed, one for each of the layers, inside of the insulating film, are arranged at intervals in the radial direction along the layers when a semiconductor substrate is viewed from above, and that are electrically connected to the layers. A thickness of at least a portion of the second regions is thicker than a thickness of the first regions.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 2, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Senoo
  • Patent number: 9035415
    Abstract: A technology for a vertical semiconductor device having a RESURF structure, which is capable of preventing the drop of the withstand voltage when the adhesion of external electric charges occurs is provided. The vertical semiconductor device disclosed in the present specification has a cell region and a non-cell region disposed outside the cell region. This vertical semiconductor device has a diffusion layer disposed in at least part of the non-cell region. When the vertical semiconductor device is viewed in a plane, the diffusion layer has an impurity surface density higher than that satisfying a RESURF condition at an end part close to the cell region, and an impurity surface density lower than that satisfying the RESURF condition at an end part far from the cell region.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 19, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Senoo
  • Patent number: 9000478
    Abstract: A semiconductor apparatus includes a substrate having a device region and a peripheral region located around the device region. A first semiconductor region is formed within the device region, is of a first conductivity type, and is exposed at an upper surface of the substrate. Second-fourth semiconductor regions are formed within the peripheral region. The second semiconductor region is of the first conductivity type, has a lower concentration of the first conductivity type of impurities, is exposed at the upper surface, and is consecutive with the first semiconductor region directly or indirectly. The third semiconductor region is of a second conductivity type, is in contact with the second semiconductor region from an underside, and is an epitaxial layer. The fourth semiconductor region is of the second conductivity type, has a lower concentration of the second conductivity type of impurities, and is in contact with the third semiconductor region from an underside.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 7, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Senoo
  • Publication number: 20150054118
    Abstract: A semiconductor device includes a semiconductor substrate, and a field plate portion formed on a front surface of a non-cell region. The non-cell region includes a plurality of FLR layers. The FLR layers extend in a first direction along a circumference of the cell region. The field plate portion includes: an insulating film; a plurality of first conducting layers each disposed along a corresponding FLR layer; and a plurality of second conducting layers. The second conducting layers are disposed on part of their corresponding FLR layers in an intermittent manner along the corresponding FLR layers. Each of the second conducting layers includes a front surface portion, a first contact portion, and a second contact portion. Any of the first contact portions and the second contact portions are not provided at positions adjacent to the first contact portion and the second contact portion in the second direction.
    Type: Application
    Filed: March 22, 2012
    Publication date: February 26, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Senoo
  • Patent number: 8952553
    Abstract: The present teaching provides a semiconductor device capable of relaxing stress transferred to a contact region during wire bonding and improving reliability of wire bonding. A semiconductor device comprises contact regions, an interlayer insulating film, an emitter electrode, and a stress relaxation portion. The contact regions are provided at a certain interval in areas exposing at a surface of a semiconductor substrate. The interlayer insulating film is provided on the surface of the semiconductor substrate between adjacent contact regions. The emitter electrode is provided on an upper side of the semiconductor substrate and electrically connected to each of the contact regions. The stress relaxation portion is provided on an upper surface of the emitter electrode in an area only above the contact regions. The stress relaxation portion is formed of a conductive material.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaru Senoo, Tomohiko Sato
  • Publication number: 20140291757
    Abstract: A semiconductor device disclosed herein includes an insulated gate, a main and a sub trench conductors. The main and sub trench conductors are formed in the cell region, and have a conductor that is covered with an insulation film and fills a trench extending in a first direction. The sub trench is located, with respect to the main trench conductor, in a second direction perpendicularly crossing the first direction and extending from the cell region side to the non-cell region. Length of the sub trench conductor in the first direction is shorter than a length of the insulated gate in the first direction. Distance between the main and sub trench conductors is shorter than a distance between the main trench conductor and the insulated gate. At least a part of the sub trench conductor reaches a position deeper than a boundary between the first and second semiconductor regions.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 2, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Hirabayashi, Masaru Senoo