Patents by Inventor Masashi Horiguchi

Masashi Horiguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020057615
    Abstract: A semiconductor memory device realizing a reduced cycle time while improving the ease of use is to be provided.
    Type: Application
    Filed: November 7, 2001
    Publication date: May 16, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Hideharu Yahata, Masashi Horiguchi, Yoshinobu Nakagome, Yoshikazu Saitoh
  • Publication number: 20020054516
    Abstract: In a semiconductor device having a data input buffer capable of inputting write data to each of memory units, the data input buffer is changed from an inactive state to an active state after the reception of instruction for a write operation effected on the memory unit. The data input buffer is a differential input buffer having interface specs based on SSTL, for example, which is brought to an active state by the turning on of a power switch to thereby cause a through current to flow and receives a signal therein while immediately following a small change in small-amplitude signal. Since the input buffer is brought to the active state only when the write operation's instructions for the memory unit is provided, the data input buffer is rendered active in advance before the instructions for the write operation is provided, whereby wastefully consumed power is reduced.
    Type: Application
    Filed: December 21, 2001
    Publication date: May 9, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Binhaku Taruishi, Hiroki Miyashita, Ken Shibata, Masashi Horiguchi
  • Publication number: 20020054514
    Abstract: Herein disclosed is a semiconductor memory device, in which peripheral circuits are arranged in a cross area of a semiconductor chip composed of the longitudinal center portions and the transverse center portions, and in which memory arrays are arranged in the four regions which are divided by the cross area. Thanks to this structure in which the peripheral circuits are arranged at the center portion of the chip, the longest signal transmission paths can be shortened to about one half of the chip size to speed up the DRAM which is intended to have a large storage capacity.
    Type: Application
    Filed: December 4, 2001
    Publication date: May 9, 2002
    Inventors: Kazuhiko Kajigaya, Kazuyuki Miyazawa, Manabu Tsunozaki, Kazuyoshi Oshima, Takashi Yamazaki, Yuji Sakai, Jiro Sawada, Yasunori Yamaguchi, Tetsurou Matsumoto, Shinji Udo, Hiroshi Yoshioka, Hirokazu Saito, Mitsuhiro Takano, Makoto Morino, Sinichi Miyatake, Eiji Miyamoto, Yasuhiro Kasama, Akira Endo, Ryoichi Hori, Jun Etoh, Masashi Horiguchi, Shinichi Ikenaga, Atsushi Kumata
  • Publication number: 20020053924
    Abstract: Power dissipation of a semiconductor integrated circuit chip is reduced when it is operated at an operating voltage of 2.5 V or below. A switching element is provided in each circuit block within the chip. Constants of the switching element are set so that leakage current in each switching element in their off-state is smaller than the subthreshold current of MOS transistors within the corresponding circuit block. Active current is supplied to active circuit blocks, while switching elements of non-active circuit blocks are turned off. Thus, dissipation currents of non-active circuit blocks are limited to leakage current value of corresponding switching elements. Thus, the sum of dissipation currents of non-active circuit blocks is made smaller than the active current in the active circuit blocks. As a result, power dissipation in the semiconductor integrated circuit chip can be reduced even in the active state.
    Type: Application
    Filed: April 12, 2001
    Publication date: May 9, 2002
    Inventors: Takeshi Sakata, Kiyoo Itoh, Masashi Horiguchi
  • Patent number: 6384623
    Abstract: Power dissipation of a semiconductor integrated circuit chip is reduced when it is operated at an operating voltage of 2.5 V or below. A switching element is provided in each circuit block within the chip. Constants of the switching element are set so that leakage current in each switching element in their off-state is smaller than the subthreshold current of MOS transistors within the corresponding circuit block. Active current is supplied to active circuit blocks, while switching elements of non-active circuit blocks are turned off. Thus, dissipation currents of non-active circuit blocks are limited to leakage current value of corresponding switching elements. Thus, the sum of dissipation currents of non-active circuit blocks is made smaller than the active current in the active circuit blocks. As a result, power dissipation in the semiconductor integrated circuit chip can be reduced even in the active state.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: May 7, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Takeshi Sakata, Kiyoo Itoh, Masashi Horiguchi
  • Publication number: 20020038907
    Abstract: Described herein is a stacked package according to the present invention, wherein a plurality of tape carriers which seal semiconductor chips, are multilayered in upward and downward directions. In the stacked package, one ends of leads formed over the whole surfaces of each tape carrier are electrically connected to their corresponding connecting terminals of the semiconductor chip. Other ends of the leads are electrically connected to their corresponding through holes defined in the tape carrier. Connecting terminals common to the plurality of semiconductor chips are formed at the same places of the plurality of tape carriers and withdrawn to the same external connecting terminals through a plurality of mutually-penetrated through holes.
    Type: Application
    Filed: October 26, 2001
    Publication date: April 4, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Toshio Miyamoto, Asao Nishimura, Koki Noguchi, Satoshi Michishita, Masashi Horiguchi, Masaharu Kubo, Kazuyoshi Shiba
  • Publication number: 20020031024
    Abstract: A semiconductor memory featuring a defect recovery scheme through employing a redundancy circuit. The memory array in the memory has a plurality of word lines, a plurality of bit lines, a spare bit line, and a plurality of memory cells. The redundancy circuit includes a comparing circuit having programmable elements which function as a memory for storing therein a defective address existing in the memory array. The programmable elements of the redundancy circuit can be programmed in accordance with any of a number of different types of defect modes. In accordance with this, each comparing circuit of the redundancy circuit compares information (data) inputted therein, for example, the column and row addresses which may be under the control of an address multiplex system, with that programmed in the programmable elements of the comparing circuit. On the basis of this comparison, an appropriate defect recovery is effected.
    Type: Application
    Filed: November 26, 2001
    Publication date: March 14, 2002
    Inventors: Masashi Horiguchi, Jun Etoh, Kiyoo Itoh
  • Patent number: 6356119
    Abstract: A semiconductor integrated circuit device is composed of logic gates each provided with at least two MOS transistors. The logic gates are connected to a first potential point and a second potential point. The semiconductor integrated circuit device includes a current control device connected between the logic gate and the first potential point and/or between the logic gate and the second potential point for controlling a value of a current flowing in the logic gate depending on an operating state of the logic gate. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors that have both an operation mode and a low power back-up or sleep mode used for power reduction.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: March 12, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Horiguchi, Kunio Uchiyama, Kiyoo Itoh, Takeshi Sakata, Masakazu Aoki, Takayuki Kawahara
  • Patent number: 6339358
    Abstract: It is possible to reduce the voltage drop on sub-power supply lines for reducing the subthreshold current and thereby prevent the operating speed of a logic circuit from lowering. Main power supply lines are arranged along one side of a rectangular region including a MOS logic circuit whose subthreshold current must be reduced, and a plurality of sub-power supply lines are arranged on the region in the direction perpendicular to the main power supply lines. A plurality of switching MOS transistors for selectively electrically connecting the sub-power supply lines to the main power supply line are dispersedly arranged with respect to the main power supply line. By dispersedly arranging the switching MOS transistors with respect to the main power supply line, it is possible to reduce the equivalent resistance of the sub-power supply lines compared to the case where switching MOS transistors are provided at one place.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: January 15, 2002
    Assignees: Hitachi, Ltd., Hitachi Device Engineering Co., Ltd.
    Inventors: Masashi Horiguchi, Yasushi Kawase, Takesada Akiba, Yoshinobu Nakagome, Kazuhiko Kajigaya
  • Patent number: 6339552
    Abstract: In a semiconductor device having a data input buffer capable of inputting write data to each of memory units, the data input buffer is changed from an inactive state to an active state after the reception of instruction for a write operation effected on the memory unit. The data input buffer is a differential input buffer having interface specs based on SSTL, for example, which is brought to an active state by the turning on of a power switch to thereby cause a through current to flow and receives a signal therein while immediately following a small change in small-amplitude signal. Since the input buffer is brought to the active state only when the write operation's instruction for the memory unit is provided, the data input buffer is rendered inactive in advance, before the instruction for the write operation is provided, whereby wasteful power consumption is reduced.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 15, 2002
    Assignees: Hitachi, Ltd., Hitachi Device Engineering Co., Ltd.
    Inventors: Binhaku Taruishi, Hiroki Miyashita, Ken Shibata, Masashi Horiguchi
  • Publication number: 20020003747
    Abstract: In a clock synchronous memory like a double data rate synchronous DRAM, a register is provided which is capable of setting a value (advanced latency) for specifying an input or entry cycle for a read or write command. Further, a timing adjustment register (124, 125) for delaying a signal by a predetermined cycle time according to the advanced latency set to the register is provided on a signal path in a column address system, which is formed between a column address latch circuit (110) and a column decoder (116).
    Type: Application
    Filed: June 4, 2001
    Publication date: January 10, 2002
    Inventors: Hideharu Yahata, Masashi Horiguchi, Hiroki Fujisawa, Tsugio Takahashi, Masayuki Nakamura
  • Patent number: 6337817
    Abstract: A semiconductor memory such as a dynamic random access memory (DRAM), having a memory array which is divided into memory mats and a storage capacity of 16 M bits or more, features a defect recovery scheme through employing a redundancy circuit. The memory array in the memory has a plurality of word lines, a plurality of bit lines, a spare bit line, and a plurality of memory cells. The redundancy circuit includes a comparing circuit having programmable elements which function as a memory for storing therein a defective address existing in the memory array. The programmable elements of the redundancy circuit can be programmed in accordance with any of a number of different types of defect modes. In accordance with this, each comparing circuit of the redundancy circuit compares information (data) inputted therein, for example, the column and row addresses which may be under the control of an address multiplex system, with that programmed in the programmable elements of the comparing circuit.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: January 8, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Horiguchi, Jun Etoh, Masakazu Aoki, Kiyoo Itoh
  • Publication number: 20020000595
    Abstract: A field oxide film 3 in a region where relief cells are formed is made wider than the field oxide film 3 in a region where normal memory cells are formed thereby to make a field relaxation layer 8r of the relief cells deeper than the field relaxation layer 8 of the normal cells, and the depletion layer of the sources and drains (n-type semiconductor regions) of the relief cells is widened to weaken the junction field.
    Type: Application
    Filed: August 7, 2001
    Publication date: January 3, 2002
    Inventors: Kiyonori Ohyu, Makoto Ohkura, Aritoshi Sugimoto, Yoshitaka Tadaki, Makoto Ogasawara, Masashi Horiguchi, Norio Hasegawa, Shinichi Fukada
  • Patent number: 6335884
    Abstract: Herein disclosed is a semiconductor memory device, in which peripheral circuits are arranged in a cross area of a semiconductor chip composed of the longitudinal center portions and the transverse center portions, and in which memory arrays are arranged in the four regions which are divided by the cross area. Thanks to this structure in which the peripheral circuits are arranged at the center portion of the chip, the longest signal transmission paths can be shortened to about one half of the chip size to speed up the DRAM which is intended to have a large storage capacity.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: January 1, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhiko Kajigaya, Kazuyuki Miyazawa, Manabu Tsunozaki, Kazuyoshi Oshima, Takashi Yamazaki, Yuji Sakai, Jiro Sawada, Yasunori Yamaguchi, Tetsurou Matsumoto, Shinji Udo, Hiroshi Yoshioka, Hirokazu Saito, Mitsuhiro Takano, Makoto Morino, Sinichi Miyatake, Eiji Miyamoto, Yasuhiro Kasama, Akira Endo, Ryoichi Hori, Jun Etoh, Masashi Horiguchi, Shinichi Ikenaga, Atsushi Kumata
  • Patent number: 6335565
    Abstract: Described herein is a stacked package according to the present invention, wherein a plurality of tape carriers which seal semiconductor chips, are multilayered in upward and downward directions. In the stacked package, one ends of leads formed over the whole surfaces of each tape carrier are electrically connected to their corresponding connecting terminals of the semiconductor chip. Other ends of the leads are electrically connected to their corresponding through holes defined in the tape carrier. Connecting terminals common to the plurality of semiconductor chips are formed at the same places of the plurality of tape carriers and withdrawn to the same external connecting terminals through a plurality of mutually-penetrated through holes.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: January 1, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Miyamoto, Asao Nishimura, Koki Noguchi, Satoshi Michishita, Masashi Horiguchi, Masaharu Kubo, Kazuyoshi Shiba
  • Publication number: 20010038569
    Abstract: A selection circuit is provided for first and second latch circuits which operate in response to first and second operation timing signals, respectively. By the selection circuit, a first operation of transmitting a signal corresponding to a first output signal of the first latch circuit to a third output terminal, and a second operation of transmitting a second output signal in place of the first output signal to the third output terminal when the first output is different from the second output signal of the second latch circuit are performed. The second operation timing signal is generated behind the first operation timing signal, and the operation period of the second latch circuit is shortened as necessary in the first operation.
    Type: Application
    Filed: April 27, 2001
    Publication date: November 8, 2001
    Inventors: Hiroki Fujisawa, Masashi Horiguchi
  • Publication number: 20010034093
    Abstract: The present invention is drawn to a semiconductor integrated circuit device employing on the same silicon substrate a plurality of kinds of MOS transistors different in magnitude of tunnel current flowing either between the source and gate or between the drain and gate thereof. These MOS transistors include tunnel-current increased MOS transistors at least one of which is for use in constituting a main circuit of the device. The plurality of kinds of MOS transistors also include tunnel-current reduced or depleted MOS transistors at least one of which is for use with a control circuit. This control circuit is inserted between the main circuit and at least one of two power supply units.
    Type: Application
    Filed: May 11, 2001
    Publication date: October 25, 2001
    Applicant: Hitachi, Ltd.
    Inventors: Nozomu Matsuzaki, Hiroyuki Mizuno, Masashi Horiguchi
  • Patent number: 6307236
    Abstract: The present invention is drawn to a semiconductor integrated circuit device employing on the same silicon substrate a plurality of kinds of MOS transistors different in magnitude of tunnel current flowing either between the source and gate or between the drain and gate thereof. These MOS transistors include tunnel-current increased MOS transistors at least one of which is for use in constituting a main circuit of the device. The plurality of kinds of MOS transistors also include tunnel-current reduced or depleted MOS transistors at least one of which is for use with a control circuit. This control circuit is inserted between the main circuit and at least one of two power supply units.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: October 23, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Nozomu Matsuzaki, Hiroyuki Mizuno, Masashi Horiguchi
  • Publication number: 20010026495
    Abstract: A dynamic RAM is divided into an input circuit block responsive to an input signal supplied from an external terminal, inclusive of an operation start signal, an internal circuit block activated in response to the signal inputted from the input circuit block, and an output circuit block for outputting a signal outputted from the internal circuit block to an external terminal. A plurality of switch MOSFETs are provided in parallel form between a power line for applying an operating voltage supplied from an external terminal and an internal power line for a first circuit portion in the internal circuit block, which does not need a storage operation upon its non-operating state. Further, the switch MOSFETs are stepwise turned on in response to controls signals produced by delaying a start signal supplied through the input circuit block in turn, so as to perform the supply of each operating voltage.
    Type: Application
    Filed: June 7, 2001
    Publication date: October 4, 2001
    Inventors: Hiromasa Noda, Masakazu Aoki, Youji Idei, Kazuhiko Kajigaya, Osamu Nagashima, Kiyoo Itoh, Masashi Horiguchi, Takeshi Sakata
  • Publication number: 20010024389
    Abstract: A module substrate has a plurality of module data terminal pairs individually provided in association with respective chip data terminals in a plurality of memory chips, and a plurality of module data wirings which respectively connect between the plurality of module data terminal pairs. The plurality of module data wirings are connected to their corresponding chip data terminals and are configured so as to be available as a memory access data bus. In a memory system in which a plurality of memory modules are arranged in parallel, module data wirings of each individual memory modules are connected in serial form, and each individual module data wirings do not constitute branch wirings with respect to a data bus on a motherboard of the memory system. In the memory modules, parallel access for the number of bits corresponding to the width of the memory access data bus is assured.
    Type: Application
    Filed: March 12, 2001
    Publication date: September 27, 2001
    Inventors: Seiji Funaba, Yoshinobu Nakagome, Masashi Horiguchi, Yoji Nishio