Patents by Inventor Masashi Horiguchi

Masashi Horiguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050088158
    Abstract: Occurrence of power supply noise arising in connection with a step-down action at the time of turning on power supply is to be restrained. A step-down unit is provided with a switched capacitor type step-down circuit and a series regulator type step-down circuit, and stepped-down voltage output terminals of the step-down circuits are connected in common. The common connection of the stepped-down voltage output terminals of both step-down circuits makes possible parallel driving of both, selective driving of either or consecutive driving of the two. In the consecutive driving, even if the switched capacitor type step-down circuit is driven after driving the series regulator type step-down circuit first to supply a stepped-down voltage to loads, the switched capacitor type step-down circuit will need only to be compensated for a discharge due to the loads, and a peak of a charge current for capacitors can be kept low.
    Type: Application
    Filed: September 14, 2004
    Publication date: April 28, 2005
    Inventors: Masashi Horiguchi, Mitsuru Hiraki
  • Publication number: 20050073895
    Abstract: With the objective of providing a semiconductor memory device which is made identical in usability to a static RAM by use of dynamic memory cells and realizes a high-speed memory cycle time, there is provided a pseudo static RAM having a time multiplex mode which, when instructions for a memory operation for reading memory information from each of memory cells each requiring a refresh operation for periodically holding the memory information, or writing the same therein is issued, carries out an addressing-based autonomous refresh operation different from the memory operation before or after the memory operation. The pseudo static RAM includes address signal transition detectors for a row and a column, and a page mode which independently performs a column address selecting operation according to an address signal transition detect signal of the second address signal transition detector.
    Type: Application
    Filed: August 8, 2003
    Publication date: April 7, 2005
    Inventors: Hideharu Yahata, Masashi Horiguchi, Yoshikazu Saitoh, Yasushi Kawase
  • Patent number: 6870790
    Abstract: A synchronous DRAM is provided which includes arrangements for operations of power supply circuitry based upon whether the DRAM is in a power down mode or not. In one embodiment, a first power supply circuit and a second power supply circuit are provided which both receive externally supplied voltages and output internal supply voltages. The first power supply circuit is not in operation when a semiconductor device of the synchronous DRAM is in a power down mode. However, the second power supply circuit is continuously in operation during the power down mode. In another arrangement, the operation of a voltage limiter circuit is controlled based on whether or not the DRAM is in a power down mode.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 22, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Horiguchi, Masayuki Nakamura, Sadayuki Ohkuma, Kazuhiko Kajigaya, Yoshinobu Nakagome
  • Patent number: 6851017
    Abstract: The present invention provides a semiconductor memory capable of shortening a refresh cycle time and reducing power consumption at refresh. The semiconductor memory includes an address input circuit for generating each of internal address signals, a redundant judgement circuit for receiving the internal address signal therein and determining whether the corresponding address corresponds to an address for a defective word line of a plurality of normal word lines, and an address counter for generating refresh address signals for sequentially refreshing the plurality of normal word lines and redundant word lines. The redundant judgment circuit is deactivated upon refresh.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: February 1, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Masashi Horiguchi, Shigeki Ueda, Hideharu Yahata
  • Patent number: 6838901
    Abstract: Power dissipation of a semiconductor integrated circuit chip is reduced when it is operated at an operating voltage of 2.5 V or below. A switching element is provided in each circuit block within the chip. Constants of the switching element are set so that leakage current in each switching element in their off-state is smaller than the subthreshold current of MOS transistors within the corresponding circuit block. Active current is supplied to active circuit blocks, while switching elements of non-active circuit blocks are turned off. Thus, dissipation currents of non-active circuit blocks are limited to leakage current value of corresponding switching elements. Thus, the sum of dissipation currents of non-active circuit blocks is made smaller than the active current in the active circuit blocks. As a result, power dissipation in the semiconductor integrated circuit chip can be reduced even in the active state.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: January 4, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Takeshi Sakata, Kiyoo Itoh, Masashi Horiguchi
  • Publication number: 20040240259
    Abstract: Herein disclosed is a semiconductor memory device, in which peripheral circuits are arranged in a cross area of a semiconductor chip composed of the longitudinal center portions and the transverse center portions, and in which memory arrays are arranged in the four regions which are divided by the cross area. Thanks to this structure in which the peripheral circuits are arranged at the center portion of the chip, the longest signal transmission paths can be shortened to about one half of the chip size to speed up the DRAM which is intended to have a large storage capacity.
    Type: Application
    Filed: October 14, 2003
    Publication date: December 2, 2004
    Inventors: Kazuhiko Kajigaya, Kazuyuki Miyazawa, Manabu Tsunozaki, Kazuyoshi Oshima, Takashi Yamazaki, Yuji Sakai, Jiro Sawada, Yasunori Yamaguchi, Tetsurou Matsumoto, Shinji Udo, Hiroshi Yoshioka, Hirokazu Saito, Mitsuhiro Takano, Makoto Morino, Sinichi Miyatake, Eiji Miyamoto, Yasuhiro Kasama, Akira Endo, Ryoichi Hori, Jun Etoh, Masashi Horiguchi, Shinichi Ikenaga, Atsushi Kumata
  • Publication number: 20040217776
    Abstract: A semiconductor integrated circuit is provided having first and second logic circuits coupled to first and second sub-power supply lines, respectively. First and second switching transistors are also provided to connect the first and second sub-power supply lines to a main power supply line. The first and second switching transistors are kept off in an operation stop state of the first and second logic circuits, and are kept on in operable state of the first and second logic circuits.
    Type: Application
    Filed: June 3, 2004
    Publication date: November 4, 2004
    Inventors: Masashi Horiguchi, Yasushi Kawase, Takesada Akiba, Yoshinobu Nakagome, Kazuhiko Kajigaya
  • Publication number: 20040184329
    Abstract: A semiconductor memory is provided with a defect recovery scheme featuring a redundancy circuit. The memory array in the memory has a plurality of word lines, a plurality of bit lines, a spare bit line, and a plurality of memory cells. The redundancy circuit includes one or more comparing circuits having programmable elements which function as a memory for storing therein a defective address existing in the memory array. The programmable elements of the redundancy circuit can be programmed in accordance with any of a number of different types of defect modes. Each comparing circuit of the redundancy circuit compares information (data) inputted therein, for example, the column and row addresses which may be under the control of an address multiplex system, with that programmed in the programmable elements of the comparing circuit. On the basis of this comparison, an appropriate defect recovery is effected.
    Type: Application
    Filed: March 31, 2004
    Publication date: September 23, 2004
    Inventors: Masashi Horiguchi, Jun Etoh, Masakazu Aoki, Kiyoo Itoh
  • Publication number: 20040155314
    Abstract: Power dissipation of a semiconductor integrated circuit chip is reduced when it is operated at an operating voltage of 2.5 V or below. A switching element is provided in each circuit block within the chip. Constants of the switching element are set so that leakage current in each switching element in their off-state is smaller than the subthreshold current of MOS transistors within the corresponding circuit block. Active current is supplied to active circuit blocks, while switching elements of non-active circuit blocks are turned off. Thus, dissipation currents of non-active circuit blocks are limited to leakage current value of corresponding switching elements. Thus, the sum of dissipation currents of non-active circuit blocks is made smaller than the active current in the active circuit blocks. As a result, power dissipation in the semiconductor integrated circuit chip can be reduced even in the active state.
    Type: Application
    Filed: July 25, 2003
    Publication date: August 12, 2004
    Inventors: Takeshi Sakata, Kiyoo Itoh, Masashi Horiguchi
  • Patent number: 6762963
    Abstract: A semiconductor memory capable of reducing refresh cycle time, which includes normal memory cells provided at predetermined intersections of plural normal word lines and plural bit lines, and redundant memory cells of redundant word lines and the plural bit lines, a redundancy relief circuit evaluates whether each of an internal address signal for a memory operation and a refresh address signal corresponds to the address of a defective word line of the plural normal word lines. An address selecting circuit switches the defective word line to a redundant word line according to the evaluation result. The redundancy relief circuit then evaluates whether a refresh address added to the refresh address signal corresponds to a defective address, and during refresh, the address selecting circuit selects a normal or redundant word line according to the evaluation result in a preceding cycle.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: July 13, 2004
    Assignees: Renesas Technology Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Yoshihiko Inoue, Hisashi Motomura, Masashi Horiguchi
  • Patent number: 6754114
    Abstract: A semiconductor memory is provided with a defect recovery scheme featuring a redundancy circuit. The memory array in the memory has a plurality of word lines, a plurality of bit lines, a spare bit line, and a plurality of memory cells. The redundancy circuit includes one or more comparing circuits having programmable elements which function as a memory for storing therein a defective address existing in the memory array. The programmable elements of the redundancy circuit can be programmed in accordance with any of a number of different types of defect modes. Each comparing circuit of the redundancy circuit compares information (data) inputted therein, for example, the column and row addresses which may be under the control of an address multiplex system, with that programmed in the programmable elements of the comparing circuit. On the basis of this comparison, an appropriate defect recovery is effected.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 22, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Masashi Horiguchi, Jun Etoh, Masakazu Aoki, Kiyoo Itoh
  • Publication number: 20040109383
    Abstract: A synchronous DRAM is provided which includes arrangements for operations of power supply circuitry based upon whether the DRAM is in a power down mode or not. In one embodiment, a first power supply circuit and a second power supply circuit are provided which both receive externally supplied voltages and output internal supply voltages. The first power supply circuit is not in operation when a semiconductor device of the synchronous DRAM is in a power down mode. However, the second power supply circuit is continuously in operation during the power down mode. In another arrangement, the operation of a voltage limiter circuit is controlled based on whether or not the DRAM is in a power down mode.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 10, 2004
    Inventors: Masashi Horiguchi, Masayuki Nakamura, Sadayuki Ohkuma, Kazuhiko Kajigaya, Yoshinobu Nakagome
  • Patent number: 6747509
    Abstract: It is possible to reduce the voltage drop on sub-power supply lines for reducing the subthreshold current and thereby prevent the operating speed of a logic circuit from lowering. Main power supply lines are arranged along one side of a rectangular region including a MOS logic circuit whose subthreshold current must be reduced, and a plurality of sub-power supply lines are arranged on the region in the direction perpendicular to the main power supply lines. A plurality of switching MOS transistors for selectively electrically connecting the sub-power supply lines to the main power supply line are dispersedly arranged with respect to the main power supply line. By dispersedly arranging the switching MOS transistors with respect to the main power supply line, it is possible to reduce the equivalent resistance of the sub-power supply lines compared to the case where switching MOS transistors are provided at one place.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: June 8, 2004
    Assignees: Hitachi, Ltd., Hitachi Device Engineering Co., Ltd.
    Inventors: Masashi Horiguchi, Yasushi Kawase, Takesada Akiba, Yoshinobu Nakagome, Kazuhiko Kajigaya
  • Publication number: 20040070425
    Abstract: A semiconductor integrated circuit device is composed of logic gates each provided with at least two MOS transistors. The logic gates are connected to a first potential point and a second potential point. The semiconductor integrated circuit device includes a current control device connected between the logic gate and the first potential point and/or between the logic gate and the second potential point for controlling a value of a current flowing in the logic gate depending on an operating state of the logic gate. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors that have both an operation mode and a low power back-up or sleep mode used for power reduction.
    Type: Application
    Filed: November 12, 2003
    Publication date: April 15, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Masashi Horiguchi, Kunio Uchiyama, Kiyoo Itoh, Takeshi Sakata, Masakazu Aoki, Takayuki Kawahara
  • Patent number: 6696865
    Abstract: A semiconductor integrated circuit device is composed of logic gates each provided with at least two MOS transistors. The logic gates are connected to a first potential point and a second potential point. The substrate voltages of the transistors are set so that the threshold voltage would be varied based on the operation mode. The semiconductor integrated circuit device includes a current control device connected between the logic gate and the first potential point and/or between the logic gate and the second potential point for controlling a value of a current flowing in the logic gate depending on an operating state of the logic gate. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors that have both an operation mode and a low power back-up or sleep mode used for power reduction.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: February 24, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Horiguchi, Kunio Uchiyama, Kiyoo Itoh, Takeshi Sakata, Masakazu Aoki, Takayuki Kawahara
  • Patent number: 6680875
    Abstract: A semiconductor device comprising a plurality of memory banks and a plurality of power supply circuits corresponding to the memory banks. Each of the memory banks is independently activated by an activating command. Given an externally supplied voltage, each of the power supply circuits outputs a predetermined internal supply voltage. Each power supply circuit has its output connected to the corresponding memory bank. In response to a command for activating one of the memory banks, the corresponding power supply circuit is activated while the remaining power supply circuits is deactivated.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: January 20, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Horiguchi, Masayuki Nakamura, Sadayuki Ohkuma, Kazuhiko Kajigaya, Yoshinobu Nakagome
  • Patent number: 6657901
    Abstract: A semiconductor memory device, in which peripheral circuits are arranged in a cross area of a semiconductor chip composed of the longitudinal center portions and the transverse center portions, and in which memory arrays are arranged in the four regions which are divided by the cross area. A benefit of this structure in which the peripheral circuits are arranged at the center portion of the chip, is that the longest signal transmission paths can be shortened to about one half of the chip size to speed up the DRAM which is intended to have a large storage capacity.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: December 2, 2003
    Assignees: Hitachi, Ltd., Hitachi VLSI Engineering Corp.
    Inventors: Kazuhiko Kajigaya, Kazuyuki Miyazawa, Manabu Tsunozaki, Kazuyoshi Oshima, Takashi Yamazaki, Yuji Sakai, Jiro Sawada, Yasunori Yamaguchi, Tetsurou Matsumoto, Shinji Udo, Hiroshi Yoshioka, Hirokazu Saito, Mitsuhiro Takano, Makoto Morino, Sinichi Miyatake, Eiji Miyamoto, Yasuhiro Kasama, Akira Endo, Ryoichi Hori, Jun Etoh, Masashi Horiguchi, Shinichi Ikenaga, Atsushi Kumata
  • Publication number: 20030209740
    Abstract: Described herein is a stacked package according to the present invention, wherein a plurality of tape carriers which seal semiconductor chips, are multilayered in upward and downward directions. In the stacked package, one ends of leads formed over the whole surfaces of each tape carrier are electrically connected to their corresponding connecting terminals of the semiconductor chip. Other ends of the leads are electrically connected to their corresponding through holes defined in the tape carrier. Connecting terminals common to the plurality of semiconductor chips are formed at the same places of the plurality of tape carriers and withdrawn to the same external connecting terminals through a plurality of mutually-penetrated through holes.
    Type: Application
    Filed: April 25, 2003
    Publication date: November 13, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Toshio Miyamoto, Asao Nishimura, Koki Noguchi, Satoshi Michishita, Masashi Horiguchi, Masaharu Kubo, Kazuyoshi Shiba
  • Publication number: 20030200407
    Abstract: A clock is located at a position close to a plurality of memory modules connected to a memory controller and located away from the controller, and wiring is carried out so that read access is preferential for transmission of read data. With respect to write data, a delay amount corresponding to a round-trip propagation delay time to each of the modules is measured and writing of the write data is carried out while maintaining a known time relationship between the clock and data. To measure round-trip reflection, lines are wired between the modules and a location detection circuit in a 1:1 relationship, and the circuit measures a time taken from a signal output time of a driver having the same impedance as that of the wired lines to a reflected-wave reception time of a hysteresis receiver.
    Type: Application
    Filed: November 15, 2002
    Publication date: October 23, 2003
    Inventors: Hideki Osaka, Toyohiko Komatsu, Masashi Horiguchi, Susumu Hatano, Kazuya Ito
  • Publication number: 20030189984
    Abstract: A data transfer method is executed to transit a three-state transmitting circuit from a high-impedance state into a data output state, transmit a preamble (dummy data) onto a bus, and sequentially transmit the essential data. The shortening of a waveform caused in the first data piece after the transition from the high-impedance state into the data output state is executed against the preamble and no shortening of a waveform is not brought about in the essential data subsequent to the preamble. This makes it possible to exclude the limitation on speeding up the data transfer imposed by the shortening of the waveform.
    Type: Application
    Filed: May 14, 2003
    Publication date: October 9, 2003
    Inventors: Toyohiko Komatsu, Hideki Osaka, Masashi Horiguchi, Susumu Hatano, Kazuya Ito