Patents by Inventor Masato Hiramatsu

Masato Hiramatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060131289
    Abstract: In a laser processing method and a laser processing apparatus which irradiate a processing target body with a laser beam pulse-oscillated from a laser beam source, a processing state is monitored by a photodetector, and the laser beam source is again subjected to oscillation control on the moment when erroneous laser irradiation is detected, thereby performing laser processing. Further, in a laser crystallization method and a laser crystallization apparatus using a pulse-oscillated excimer laser, a homogenizing optical system, an optical element and a half mirror are arranged in an optical path, light from the half mirror is detected by a photodetector, and a light intensity insufficient irradiation position is again irradiated with a laser beam to perform crystallization when the detection value does not fall within a range of a predetermined specified value.
    Type: Application
    Filed: October 11, 2005
    Publication date: June 22, 2006
    Inventors: Masayuki Jyumonji, Hiroyuki Ogawa, Masato Hiramatsu, Noritaka Akita, Tomoya Kato
  • Publication number: 20060124971
    Abstract: A semiconductor device includes a non-single-crystal semiconductor film, a support substrate that supports the non-single-crystal semiconductor film, and an active device having a part of the non-single-crystal semiconductor film as a channel region. In particular, the channel region has an oxygen concentration not higher than 1×1018 atoms/cm3 and a carbon concentration not higher than 1×1018 atoms/cm3.
    Type: Application
    Filed: January 20, 2006
    Publication date: June 15, 2006
    Applicant: Advanced LCD Technologies Dev. Ctr. Co., Ltd
    Inventors: Masato Hiramatsu, Yoshinobu Kimura, Hiroyuki Ogawa, Masayuki Jyumonji, Yoshitaka Yamamoto, Masakiyo Matsumura
  • Publication number: 20060065644
    Abstract: An amorphous silicon layer is deposited on a glass substrate via an underlayer insulating film, and further a light-emitting layer is inserted between the glass substrate and the underlayer insulating film in a partial region on the glass substrate. To measure light intensity distribution of laser light applied to the amorphous silicon layer, the laser light is applied to the light-emitting layer from the surface of a substrate to be treated. The light intensity distribution of the light emitted from the light-emitting layer is two-dimensionally imaged using an optical image pickup system from the back surface of the substrate to be treated, and measured using an image pickup device. The light intensity distribution of the laser light in the face to be treated is obtained from the light intensity distribution of the emission measured in this manner.
    Type: Application
    Filed: April 6, 2005
    Publication date: March 30, 2006
    Inventors: Masayuki Jyumonji, Masato Hiramatsu, Masakiyo Matsumura
  • Publication number: 20060043258
    Abstract: A knife edge is disposed at a height corresponding to a section on which a sectional image (light intensity distribution) is picked up in such a manner as to intercept a part of the section of the laser light. The knife edge is irradiated with the laser light, and the sectional image of the laser light is enlarged with an image forming optics, and is picked up by a CCD. While picking up the sectional image in this manner, focusing of the image forming optics is performed. Next, the knife edge is retracted from the optical path of the laser light, the laser light is allowed to enter the CCD via the image forming optics, and the sectional image of the laser light is picked up.
    Type: Application
    Filed: July 12, 2005
    Publication date: March 2, 2006
    Inventors: Masayuki Jyumonji, Masakiyo Matsumura, Yukio Taniguchi, Masato Hiramatsu, Hiroyuki Ogawa, Noritaka Akita
  • Publication number: 20060040436
    Abstract: A method for forming a crystallized semiconductor layer includes preparing a non-single-crystal semiconductor layer in which at least one crystal seed is formed, and irradiating with an energy ray the non-single-crystal semiconductor layer having the crystal seed formed therein to allow a crystal to laterally grow from the crystal seed in the non-single-crystal semiconductor layer, irradiation of the energy ray is carried out by positioning to at least a part of the crystal seed an area having a minimum intensity value of the energy ray, the energy ray having a confirmation that an area having a maximum intensity value of the energy ray is continuously reduced to the area having the minimum intensity value in an irradiated surface.
    Type: Application
    Filed: August 16, 2005
    Publication date: February 23, 2006
    Inventors: Yoshitaka Yamamoto, Mikihiko Nishitani, Masato Hiramatsu, Masayuki Jyumonji, Yoshinobu Kimura
  • Publication number: 20060033104
    Abstract: There is disclosed a thin film transistor having a source region, a channel region, and a drain region in a semiconductor thin film whose crystals have grown in a transverse direction, the thin film transistor having a gate insulating film and a gate electrode in an upper part of the channel region, wherein a channel-region-side edge portion of the drain region or the source region is disposed in such a manner as to be positioned in the vicinity of an end position of lateral growth.
    Type: Application
    Filed: August 5, 2005
    Publication date: February 16, 2006
    Applicant: Advanced LCD Technologies Dev. Ctr. Co., Ltd.
    Inventors: Yoshiaki Nakazaki, Fumiki Nakano, Genshiro Kawachi, Terunori Warabisako, Masayuki Jyumonji, Hiroyuki Ogawa, Masato Hiramatsu, Tomoya Kato
  • Publication number: 20060027809
    Abstract: Exact alignment of a recrystallized region, which is to be formed in an amorphous or polycrystalline film, is facilitated. An alignment mark is formed, which is usable in a step of forming an electronic device, such as a thin-film transistor, in the recrystallized region. In addition, in a step of obtaining a large-grain-sized crystal-phase semiconductor from a semiconductor film, a mark structure that is usable as an alignment mark in a subsequent step is formed on the semiconductor film in the same exposure step. Thus, the invention includes a light intensity modulation structure that modulates light and forms a light intensity distribution for crystallization, and a mark forming structure that modulates light and forms a light intensity distribution including a pattern with a predetermined shape, and also forms a mark indicative of a predetermined position on a crystallized region.
    Type: Application
    Filed: August 2, 2005
    Publication date: February 9, 2006
    Inventors: Hiroyuki Ogawa, Noritaka Akita, Yukio Taniguchi, Masato Hiramatsu, Masayuki Jyumonji, Masakiyo Matsumura
  • Patent number: 6987035
    Abstract: A method for forming a crystallized semiconductor layer includes preparing a non-single-crystal semiconductor layer in which at least one crystal seed is formed, and irradiating with an energy ray the non-single-crystal semiconductor layer having the crystal seed formed therein to allow a crystal to laterally grow from the crystal seed in the non-single-crystal semiconductor layer, irradiation of the energy ray is carried out by positioning to at least a part of the crystal seed an area having a minimum intensity value of the energy ray, the energy ray having a confirmation that an area having a maximum intensity value of the energy ray is continuously reduced to the area having the minimum intensity value in an irradiated surface.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: January 17, 2006
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yoshitaka Yamamoto, Mikihiko Nishitani, Masato Hiramatsu, Masayuki Jyumonji, Yoshinobu Kimura
  • Publication number: 20050272274
    Abstract: Disclosed are apparatus for forming a semiconductor film having an excellent crystallinity from a non-single crystal semiconducting layer formed on a base layer made of an insulating material. The apparatus includes a light source, a homogenizer for homogenizing an intensity distribution of the emitted light, an amplitude-modulation means for performing the amplitude-modulation such that the amplitude of the light, of which the intensity distribution is homogenized, is increased in the direction of the relative motion of the light to the base layer, an optional light projection optical system for projecting the amplitude-modulated light onto the surface of the non-single crystal semiconductor such that a predetermined irradiation energy can be obtained, a phase shifter for providing a low temperature point in the surface irradiated by the light, and a substrate stage to move the light relative to the substrate thereby enabling scanning in the X and Y axis.
    Type: Application
    Filed: August 5, 2005
    Publication date: December 8, 2005
    Inventors: Masakiyo Matsumura, Mikihiko Nishitani, Yoshinobu Kimura, Masayuki Jyumonji, Yukio Taniguchi, Masato Hiramatsu, Fumiki Nakano
  • Publication number: 20050272184
    Abstract: A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
    Type: Application
    Filed: May 25, 2005
    Publication date: December 8, 2005
    Inventors: Masato Hiramatsu, Hiroyuki Ogawa, Masakiyo Matsumura
  • Patent number: 6953714
    Abstract: A method for producing a thin film semiconductor device is described. In the method, a thin film layer of non-single-crystalline semiconductor, which is deposited on a base layer of glass, is processed to an island-shaped thin film layer at the time prior to the layer irradiation step. The laser irradiation to the thin film layer of non-single-crystalline semiconductor is carried out after forming an insulation film layer and a gate electrode over the island-shaped thin film layer, by using the gate electrode as the irradiation mask, whereby the center area of the island-shaped thin film layer masked by the gate electrode is crystallized, and simultaneously, the both side areas thereof which is not masked by the gate electrode are annealed. Next, a source electrode and a drain electrode is formed in the annealed areas. The implantation of impurity ion may be carried out either before or after the laser irradiation.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: October 11, 2005
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yoshinobu Kimura, Masakiyo Matsumura, Mikihiko Nishitani, Masato Hiramatsu, Masayuki Jyumonji, Yoshitaka Yamamoto, Hideo Koseki
  • Patent number: 6946367
    Abstract: Methods for forming a single crystal semiconductor thin film layer from a non-single crystal layer includes directing a light source having a homogenized intensity distribution and a modulated amplitude towards the non-single crystal layer, and relatively moving the light with respect to the layer wherein the amplitude of the conditioned light is preferably increased in the direction of relative motion of the light to the layer. Preferred methods also include multiple light exposures in overlapping series to form ribbon-shaped single crystal regions, and providing a low temperature point in the semiconductor layer to generate a starting location for single crystalization.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: September 20, 2005
    Assignee: Kabushiki Kaisha Ekisho Sentan Gijutsu Kaihatsu Center
    Inventors: Masakiyo Matsumura, Mikihiko Nishitani, Yoshinobu Kimura, Masayuki Jyumonji, Yukio Taniguchi, Masato Hiramatsu, Fumiki Nakano
  • Publication number: 20050161676
    Abstract: A method for producing a thin film semiconductor device is described. In the method, a thin film layer of non-single-crystalline semiconductor, which is deposited on a base layer of glass, is processed to an island-shaped thin film layer at the time prior to the layer irradiation step. The laser irradiation to the thin film layer of non-single-crystalline semiconductor is carried out after forming an insulation film layer and a gate electrode over the island-shaped thin film layer, by using the gate electrode as the irradiation mask, whereby the center area of the island-shaped thin film layer masked by the gate electrode is crystallized, and simultaneously, the both side areas thereof which is not masked by the gate electrode are annealed. Next, a source electrode and a drain electrode is formed in the annealed areas. The implantation of impurity ion may be carried out either before or after the laser irradiation.
    Type: Application
    Filed: February 23, 2005
    Publication date: July 28, 2005
    Applicant: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yoshinobu Kimura, Masakiyo Matsumura, Mikihiko Nishitani, Masato Hiramatsu, Masayuki Jyumonji, Yoshitaka Yamamoto, Hideo Koseki
  • Publication number: 20050161738
    Abstract: A thin film transistor includes a one conductive type semiconductor layer; a source region and a drain region which are separately provided in the semiconductor layer; and a gate electrode provided above or below the semiconductor layer with an insulating film interposed therebetween, wherein the width of the junction face between the source region and the channel which is provided between the source region and drain region, is different from the width of the junction face between the above channel region and the drain region.
    Type: Application
    Filed: March 4, 2003
    Publication date: July 28, 2005
    Applicant: Kabushiki Kaisha Ekisho Sentan Gijutsu Kaishatsu C
    Inventors: Masato Hiramatsu, Masakiyo Matsumura, Mikihiko Nishitani, Yoshinobu Kimura, Yoshitaka Yamamoto
  • Publication number: 20050145845
    Abstract: The semiconductor device according to the present invention has a semiconductor layer having not smaller than two types of crystal grains different in size within a semiconductor circuit on a same substrate.
    Type: Application
    Filed: January 25, 2005
    Publication date: July 7, 2005
    Applicant: Advanced LCD Technologies Dev. Ctr. Co., Ltd
    Inventors: Masayuki Jyumonji, Masakiyo Matsumura, Yoshinobu Kimura, Mikihiko Nishitani, Masato Hiramatsu, Yukio Taniguchi, Fumiki Nakano, Hiroyuki Ogawa
  • Patent number: 6870126
    Abstract: The semiconductor device according to the present invention has a semiconductor layer having not smaller than two types of crystal grains different in size within a semiconductor circuit on a same substrate.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: March 22, 2005
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masayuki Jyumonji, Masakiyo Matsumura, Yoshinobu Kimura, Mikihiko Nishitani, Masato Hiramatsu, Yukio Taniguchi, Fumiki Nakano, Hiroyuki Ogawa
  • Publication number: 20050014315
    Abstract: A method for forming a crystallized semiconductor layer includes preparing a non-single-crystal semiconductor layer in which at least one crystal seed is formed, and irradiating with an energy ray the non-single-crystal semiconductor layer having the crystal seed formed therein to allow a crystal to laterally grow from the crystal seed in the non-single-crystal semiconductor layer, irradiation of the energy ray is carried out by positioning to at least a part of the crystal seed an area having a minimum intensity value of the energy ray, the energy ray having a confirmation that an area having a maximum intensity value of the energy ray is continuously reduced to the area having the minimum intensity value in an irradiated surface.
    Type: Application
    Filed: June 2, 2004
    Publication date: January 20, 2005
    Inventors: Yoshitaka Yamamoto, Mikihiko Nishitani, Masato Hiramatsu, Masayuki Jyumonji, Yoshinobu Kimura
  • Publication number: 20050012228
    Abstract: A thin-film semiconductor substrate includes an insulative substrate, an amorphous semiconductor thin film that is formed on the insulative substrate, and a plurality of alignment marks that are located on the semiconductor thin film and are indicative of reference positions for crystallization.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 20, 2005
    Inventors: Masato Hiramatsu, Yoshinobu Kimura, Hiroyuki Ogawa, Masayuki Jyumonji, Masakiyo Matsumura
  • Publication number: 20040266080
    Abstract: There are provided a crystallization method which can design laser beam having a light intensity and a distribution optimized on an incident surface of a substrate, form a desired crystallized structure while suppressing generation of any other undesirable structure area and satisfy a demand for low-temperature processing, a crystallization apparatus, a thin film transistor and a display apparatus. When crystallizing a non-single-crystal semiconductor thin film by irradiating laser beam thereto, irradiation light beam to the non-single-crystal semiconductor thin film have a light intensity with a light intensity distribution which cyclically repeats a monotonous increase and a monotonous decrease and a light intensity which melts the non-single-crystal semiconductor. Further, at least a silicon oxide film is provided on a laser beam incident surface of the non-single-crystal semiconductor film.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 30, 2004
    Inventors: Masayuki Jyumonji, Hiroyuki Ogawa, Masakiyo Matsumura, Masato Hiramatsu, Yoshinobu Kimura, Yukio Taniguchi, Tomoya Kato
  • Publication number: 20040164298
    Abstract: A semiconductor device includes a non-single-crystal semiconductor film, a support substrate that supports the non-single-crystal semiconductor film, and an active device having a part of the non-single-crystal semiconductor film as a channel region. In particular, the channel region has an oxygen concentration not higher than 1×1018 atoms/cm3 and a carbon concentration not higher than 1×1018 atoms/cm3.
    Type: Application
    Filed: November 28, 2003
    Publication date: August 26, 2004
    Inventors: Masato Hiramatsu, Yoshinobu Kimura, Hiroyuki Ogawa, Masayuki Jyumonji, Yoshitaka Yamamoto, Masakiyo Matsumura