Patents by Inventor Matthew V. Metz

Matthew V. Metz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210167182
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Seung Hoon SUNG, Ashish Verma PENUMATCHA, Sou-Chi CHANG, Devin MERRILL, I-Cheng TUNG, Nazila HARATIPOUR, Jack T. KAVALIEROS, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Chia-Ching LIN, Owen LOH, Shriram SHIVARAMAN, Eric Charles MATTSON
  • Publication number: 20210135007
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Applicant: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Publication number: 20210091075
    Abstract: Self-aligned gate endcap (SAGE) architectures without fin end gaps, and methods of fabricating self-aligned gate endcap (SAGE) architectures without fin end gaps, are described. In an example, an integrated circuit structure includes a semiconductor fin having a cut along a length of the semiconductor fin. A gate endcap isolation structure has a first portion parallel with the length of the semiconductor fin and is spaced apart from the semiconductor fin. The gate endcap isolation structure also has a second portion in a location of the cut of the semiconductor fin and in contact with the semiconductor fin.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Szuya S. LIAO, Scott B. CLENDENNING, Jessica TORRES, Lukas BAUMGARTEL, Kiran CHIKKADI, Diane LANCASTER, Matthew V. METZ, Florian GSTREIN, Martin M. MITAN, Rami HOURANI
  • Patent number: 10957769
    Abstract: Monolithic FETs including a fin of a first III-V semiconductor material offering high carrier mobility is clad with a second III-V semiconductor material having a wider bandgap. The wider bandgap cladding may advantageously reduce band-to-band tunneling (BTBT) leakage current while transistor is in an off-state while the lower bandgap core material may advantageously provide high current conduction while transistor is in an on-state. In some embodiments, a InGaAs cladding material richer in Ga is grown over an InGaAs core material richer in In. In some embodiments, the semiconductor cladding is a few nanometers thick layer epitaxially grown on surfaces of the semiconductor core. The cladded fin may be further integrated into a gate-last finFET fabrication process. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 23, 2021
    Assignee: Intel Corporation
    Inventors: Sean T. Ma, Chandra S. Mohapatra, Gilbert Dewey, Willy Rachmady, Harold W. Kennel, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10937907
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: March 2, 2021
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Publication number: 20210057413
    Abstract: An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS transistors having a group III-V material source/drain region.
    Type: Application
    Filed: March 28, 2018
    Publication date: February 25, 2021
    Inventors: Gilbert DEWEY, Ravi PILLARISETTY, Jack T. KAVALIEROS, Aaron D. LILAK, Willy RACHMADY, Rishabh MEHANDRU, Kimin JUN, Anh PHAN, Hui Jae YOO, Patrick MORROW, Cheng-Ying HUANG, Matthew V. METZ
  • Patent number: 10930766
    Abstract: An apparatus including a three-dimensional semiconductor body including a channel region and junction regions disposed on opposite sides of the channel region, the three-dimensional semiconductor body including a plurality of nanowires including a germanium material disposed in respective planes separated in the junction regions by a second material, wherein a lattice constant of the second material is similar to a lattice constant of the germanium material; and a gate stack disposed on the channel region, the gate stack including a gate electrode disposed on a gate dielectric. A method of including forming a plurality of nanowires in separate planes on a substrate, each of the plurality of nanowires including a germanium material and separated from an adjacent nanowire by a sacrificial material; disposing a gate stack on the plurality of nanowires in a designated channel region, the gate stack including a dielectric material and a gate electrode.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Matthew V. Metz, Van H. Le, Jack T. Kavalieros, Sanaz K. Gardner
  • Patent number: 10903364
    Abstract: Embodiments are generally directed to a semiconductor device with released source and drain. An embodiment of a method includes etching a buffer layer of a semiconductor device to form a gate trench under a gate channel portion of a channel layer of the device; filling the gate trench with an oxide material to form an oxide isolation layer; etching one or more source/drain contact trenches in an interlayer dielectric (ILD) layer for source and drain regions of the device; etching the oxide isolation layer within the one or more source/drain contact trenches to form one or more cavities under a source/drain channel in the source and drain regions, wherein the etching of each contact trench is to expose all sides of the source/drain channel; and depositing contact metal in the one or more contact trenches, including depositing the contact metal in the cavities under the source/drain channel.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: January 26, 2021
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Sanaz K. Gardner, Chandra S. Mohapatra, Matthew V. Metz, Gilbert Dewey, Sean T. Ma, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10892335
    Abstract: Disclosed herein are tri-gate and all-around-gate transistor arrangements, and related methods and devices. For example, in some embodiments, a transistor arrangement may include a channel material disposed over a substrate; a gate electrode of a first tri-gate or all-around-gate transistor, disposed over a first part of the channel material; and a gate electrode of a second tri-gate or all-around-gate transistor, disposed over a second part of the channel material. The transistor arrangement may further include a device isolation structure made of a fixed charge dielectric material disposed over a third part of the channel material, the third part being between the first part and the second part of the channel material.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Sean T. Ma, Willy Rachmady, Gilbert W. Dewey, Aaron D. Lilak, Justin R. Weber, Harold W. Kennel, Cheng-Ying Huang, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10886408
    Abstract: Techniques are disclosed for forming group III-V material transistors employing nitride-based dopant diffusion barrier layers. The techniques can include growing the dilute nitride-based barrier layer as a relatively thin layer of III-V material in the sub-channel (or sub-fin) region of a transistor, near the substrate/III-V material interface, for example. Such a nitride-based barrier layer can be used to trap atoms from the substrate at vacancy sites within the III-V material. Therefore, the barrier layer can arrest substrate atoms from diffusing in an undesired manner by protecting the sub-channel layer from being unintentionally doped due to subsequent processing in the transistor fabrication. In addition, by forming the barrier layer pseudomorphically, the lattice mismatch of the barrier layer with the sub-channel layer in the heterojunction stack becomes insignificant. In some embodiments, the group III-V alloyed with nitrogen (N) material may include an N concentration of less than 5, 2, or 1.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 5, 2021
    Assignee: INTEL CORPORATION
    Inventors: Chandra S. Mohapatra, Harold W. Kennel, Glenn A. Glass, Willy Rachmady, Anand S. Murthy, Gilbert Dewey, Jack T. Kavalieros, Tahir Ghani, Matthew V. Metz, Sean T. Ma
  • Publication number: 20200411686
    Abstract: A vertical transistor structure includes a material stack having a source material, a drain material, and a channel material therebetween. The vertical transistor structure further includes a gate electrode adjacent to a sidewall of the stack, where the sidewall includes the channel material, and at least a partial thickness of both the source material and the drain material. A gate dielectric is present between the sidewall of the stack and the gate electrode. The vertical transistor structure further includes a first metallization over a first area of the stack above the gate dielectric layer, and in contact with the gate electrode on sidewall of the stack. A second metallization is adjacent to the first metallization, where the second metallization is over a second area of the stack, and in contact with the source material or the drain material.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, I-cheng Tung, Abhishek A. Sharma, Arnab Sen Gupta, Van Le, Matthew V. Metz, Jack Kavalieros, Tahir Ghani
  • Patent number: 10879365
    Abstract: In various embodiments, the disclosure describes transistors having non-vertical gates. In one embodiment, the non-vertical gates can have a curved or wide angle gate in order to reduce the electric field crowing on the drain side of the gate edge and/or portions having corners and thereby reduce leakage current in the transistor. In one embodiment, the non-vertical gate can be generated by one or more etching steps (for example, isotropic etching steps) of an underlying channel during the fabrication of a transistor having the non-vertical gate. In one embodiment, the non-vertical gate can be generated by one or more directional etching steps that may expose various facets having predetermined orientations of a source and/or drain associated with the transistor.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Sean T. Ma, Willy Rachmady, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10847619
    Abstract: An embodiment includes an apparatus comprising: a trench included in an insulation layer that is formed on a substrate, the trench having a top portion and a bottom portion between the top portion and the substrate; a first layer which comprises a first material and is included in the bottom portion; and a superlattice, in the trench and on the first layer, including second and third layers that directly contact each other; wherein: (a) the second and third layers respectively include second and third materials, (b) the second and third materials have different chemical compositions from each other, and (c) the first layer is thicker than each of the second and third. Other embodiments are described herein.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Matthew V. Metz, Willy Rachmady, Gilbert Dewey, Jack T. Kavalieros
  • Patent number: 10818793
    Abstract: Techniques are disclosed for forming high mobility NMOS fin-based transistors having an indium-rich channel region electrically isolated from the sub-fin by an aluminum-containing layer. The aluminum aluminum-containing layer may be provisioned within an indium-containing layer that includes the indium-rich channel region, or may be provisioned between the indium-containing layer and the sub-fin. The indium concentration of the indium-containing layer may be graded from an indium-poor concentration near the aluminum-containing barrier layer to an indium-rich concentration at the indium-rich channel layer. The indium-rich channel layer is at or otherwise proximate to the top of the fin, according to some example embodiments. The grading can be intentional and/or due to the effect of reorganization of atoms at the interface of indium-rich channel layer and the aluminum-containing barrier layer. Numerous variations and embodiments will be appreciated in light of this disclosure.
    Type: Grant
    Filed: February 23, 2019
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Chandra S. Mohapatra, Anand S. Murthy, Glenn A. Glass, Tahir Ghani, Willy Rachmady, Jack T. Kavalieros, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel
  • Publication number: 20200328278
    Abstract: Embodiments related to transistors and integrated circuits having aluminum indium phosphide subfins and germanium channels, systems incorporating such transistors, and methods for forming them are discussed.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: Intel Corporation
    Inventors: Matthew V. Metz, Willy Rachmady, Harold W. Kennel, Van H. Le, Benjamin Chu-Kung, Jack T. Kavalieros, Gilbert Dewey
  • Publication number: 20200321435
    Abstract: Monolithic FETs including a fin of a first semiconductor composition disposed on a sub-fin of a second composition. In some examples, an InGaAs fin is grown over GaAs sub-fin. The sub-fin may be epitaxially grown from a seeding surface disposed within a trench defined in an isolation dielectric. The sub-fin may be planarized with the isolation dielectric. The fin may then be epitaxially grown from the planarized surface of the sub-fin. A gate stack may be disposed over the fin with the gate stack contacting the planarized surface of the isolation dielectric so as to be self-aligned with the interface between the fin and sub-fin. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 17, 2016
    Publication date: October 8, 2020
    Applicant: Intel Corporation
    Inventors: Sean T. Ma, Matthew V. Metz, Willy Rachmady, Gilbert Dewey, Chandra S. Mohapatra, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Publication number: 20200321439
    Abstract: Monolithic FETs including a fin of a first III-V semiconductor material offering high carrier mobility is clad with a second III-V semiconductor material having a wider bandgap. The wider bandgap cladding may advantageously reduce band-to-band tunneling (BTBT) leakage current while transistor is in an off-state while the lower bandgap core material may advantageously provide high current conduction while transistor is in an on-state. In some embodiments, a InGaAs cladding material richer in Ga is grown over an InGaAs core material richer in In. In some embodiments, the semiconductor cladding is a few nanometers thick layer epitaxially grown on surfaces of the semiconductor core. The cladded fin may be further integrated into a gate-last finFET fabrication process. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 17, 2016
    Publication date: October 8, 2020
    Applicant: Intel Corporation
    Inventors: Sean T. Ma, Chandra S. Mohapatra, Gilbert Dewey, Willy Rachmady, Harold W. Kennel, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10797150
    Abstract: An apparatus including a non-planar body on a substrate, the body including a channel on a blocking material, and a gate stack on the body, the gate stack including a first gate electrode material including a first work function disposed on the channel material and a second gate electrode material including a second work function different from the first work function disposed on the channel material and on the blocking material. A method including forming a non-planar body on a substrate, the non-planar body including a channel on a blocking material, and forming a gate stack on the body, the gate stack including a first gate electrode material including a first work function disposed on the channel and a second gate electrode material including a second work function different from the first work function disposed on the channel and on the blocking material.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: Sean T. Ma, Willy Rachmady, Matthew V. Metz, Chandra S. Mohapatra, Gilbert Dewey, Nadia M. Rahhal-Orabi, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10784352
    Abstract: Related fields of the present disclosure are in the field of transistor devices, and in particular, FinFET device structures formed using aspect ratio trapping trench (ART) process techniques. For example, a FinFET device consistent with the present disclosure comprises a first fin structure including a first upper fin portion atop a first lower fin portion and a second fin structure including a second upper fin portion atop a second lower fin portion. The first and second upper fin structures include a Group IV material and the first and second lower fin structures include a Group III-V material.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: September 22, 2020
    Assignee: Intel Corporation
    Inventors: Sanaz K. Gardner, Willy Rachmady, Van H. Le, Matthew V. Metz, Seiyon Kim, Ashish Agrawal, Jack T. Kavalieros
  • Publication number: 20200295003
    Abstract: Disclosed herein are stacked transistors having device strata with different channel widths, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, wherein different channel materials of different strata have different widths.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: Gilbert W. Dewey, Jack T. Kavalieros, Willy Rachmady, Cheng-Ying Huang, Matthew V. Metz, Kimin Jun, Patrick Morrow, Aaron D. Lilak, Ehren Mannebach, Anh Phan