Patents by Inventor Michael Friedmann

Michael Friedmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557462
    Abstract: A process chamber, such as for semiconductor processing equipment, is connected with a recovery unit. The recovery unit includes a first storage tank for buffer gas and a second storage tank for rare gas. Both storage tanks are connected with a column in the recovery unit. The recovery unit and process chamber can operate as a closed system. The rare gas can be transported at a variable flow rate while separation in the recovery unit operates at a constant flow condition.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: January 17, 2023
    Assignee: KLA CORPORATION
    Inventors: Chao Chang, Michael Friedmann
  • Publication number: 20220196576
    Abstract: Methods and systems for performing measurements of semiconductor structures based on high-brightness, Soft X-Ray (SXR) illumination over a small illumination spot size with a small physical footprint are presented herein. In one aspect, the focusing optics of an SXR based metrology system project an image of the illumination source onto a specimen under measurement with a demagnification of at least 1.25. In a further aspect, an illumination beam path from the x-ray illumination source to the specimen under measurement is less than 2 meters. In another aspect, SXR based measurements are performed with x-ray radiation in the soft x-ray region (i.e., 80-3000 eV). In some embodiments, SXR based measurements are performed at grazing angles of incidence in a range from near zero degrees to 90 degrees. In some embodiments, the illumination optics project an image of an illumination source onto a specimen under measurement with a demagnification of 50, or less.
    Type: Application
    Filed: August 24, 2021
    Publication date: June 23, 2022
    Inventors: David Y. Wang, Kerstin Purrucker, Michael Friedmann
  • Patent number: 11333621
    Abstract: Methods and systems for performing measurements of semiconductor structures based on high-brightness, polychromatic, reflective small angle x-ray scatterometry (RSAXS) metrology are presented herein. RSAXS measurements are performed over a range of wavelengths, angles of incidence, and azimuth angles with small illumination beam spot size, simultaneously or sequentially. In some embodiments, RSAXS measurements are performed with x-ray radiation in the soft x-ray (SXR) region at grazing angles of incidence in the range of 5-20 degrees. In some embodiments, the x-ray illumination source size is 10 micrometers or less, and focusing optics project the source area onto a wafer with a demagnification factor of 0.2 or less, enabling an incident x-ray illumination spot size of less than two micrometers.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 17, 2022
    Assignee: KLA-Tencor Corporation
    Inventors: Daniel Wack, Oleg Khodykin, Andrei V. Shchegrov, Alexander Kuznetsov, Nikolay Artemiev, Michael Friedmann
  • Patent number: 11272607
    Abstract: Methods and systems for generating X-ray illumination from a laser produced plasma (LPP) employing a low atomic number, cryogenic target are presented herein. A highly focused, short duration laser pulse is directed to a low atomic number, cryogenically frozen target, igniting a plasma. In some embodiments, the target material includes one or more elements having an atomic number less than 19. In some embodiments, the low atomic number, cryogenic target material is coated on the surface of a cryogenically cooled drum configured to rotate and translate with respect to incident laser light. In some embodiments, the low atomic number, cryogenic LPP light source generates multiple line or broadband X-ray illumination in a soft X-ray (SXR) spectral range used to measure structural and material characteristics of semiconductor structures. In some embodiments, Reflective, Small-Angle X-ray Scatterometry measurements are performed with a low atomic number, cryogenic LPP illumination source as described herein.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: March 8, 2022
    Assignee: KLA Corporation
    Inventors: Chao Chang, Michael Friedmann, Jongjin Kim, Will Schumaker, Ben Clarke
  • Patent number: 11268901
    Abstract: A collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and a spectrometer to receive the reflected optical beam. The collection system also includes a plurality of aperture masks arranged in a rotatable sequence about an axis parallel to an optical axis. Each aperture mask of the plurality of aperture masks is rotatable into and out of the reflected optical beam between the chuck and the spectrometer to selectively mask the reflected optical beam.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 8, 2022
    Assignee: KLA Corporation
    Inventors: Barry Blasenheim, Noam Sapiens, Michael Friedmann, Pablo Rovira
  • Patent number: 11259394
    Abstract: Methods and systems for generating X-ray illumination from a laser produced plasma (LPP) employing a liquid sheet jet target are presented herein. A highly focused, short duration laser pulse is directed to a liquid sheet jet target. The interaction of the focused laser pulse with the sheet jet target ignites a plasma. In some embodiments, the liquid sheet jet is generated by a convergent capillary nozzle or a convergent, planar cavity nozzle. In some embodiments, the target material includes one or more elements having a relatively low atomic number. In some embodiments, the liquid sheet jet LPP light source generates multiple line or broadband X-ray illumination in a soft X-ray (SXR) spectral range used to measure structural and material characteristics of semiconductor structures. In some embodiments, Reflective, Small-Angle X-ray Scatterometry measurements are performed with a liquid sheet jet LPP illumination source as described herein.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: February 22, 2022
    Assignee: KLA Corporation
    Inventors: Chao Chang, Will Schumaker, Jongjin Kim, Michael Friedmann
  • Patent number: 11121521
    Abstract: A system for pumping laser sustained plasma is disclosed. The system includes a plurality of pump modules configured to generate respective pulses of pump illumination for the laser sustained plasma, wherein at least one pump module is configured to generate a train of pump pulses that is interlaced in time with another train of pump pulses generated by at least one other pump module of the plurality of pump modules. The system further includes a plurality of non-collinear illumination paths configured to direct the respective pulses of pump illumination from the plurality of pump modules into a collection volume of the laser sustained plasma.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: September 14, 2021
    Assignee: KLA Corporation
    Inventors: Ilya Bezel, Matthew Derstine, William Schumaker, Michael Friedmann
  • Publication number: 20210136902
    Abstract: Methods and systems for generating X-ray illumination from a laser produced plasma (LPP) employing a low atomic number, cryogenic target are presented herein. A highly focused, short duration laser pulse is directed to a low atomic number, cryogenically frozen target, igniting a plasma. In some embodiments, the target material includes one or more elements having an atomic number less than 19. In some embodiments, the low atomic number, cryogenic target material is coated on the surface of a cryogenically cooled drum configured to rotate and translate with respect to incident laser light. In some embodiments, the low atomic number, cryogenic LPP light source generates multiple line or broadband X-ray illumination in a soft X-ray (SXR) spectral range used to measure structural and material characteristics of semiconductor structures. In some embodiments, Reflective, Small-Angle X-ray Scatterometry measurements are performed with a low atomic number, cryogenic LPP illumination source as described herein.
    Type: Application
    Filed: October 21, 2020
    Publication date: May 6, 2021
    Inventors: Chao Chang, Michael Friedmann, Jongjin Kim, Will Schumaker, Ben Clarke
  • Publication number: 20210136901
    Abstract: Methods and systems for generating X-ray illumination from a laser produced plasma (LPP) employing a liquid sheet jet target are presented herein. A highly focused, short duration laser pulse is directed to a liquid sheet jet target. The interaction of the focused laser pulse with the sheet jet target ignites a plasma. In some embodiments, the liquid sheet jet is generated by a convergent capillary nozzle or a convergent, planar cavity nozzle. In some embodiments, the target material includes one or more elements having a relatively low atomic number. In some embodiments, the liquid sheet jet LPP light source generates multiple line or broadband X-ray illumination in a soft X-ray (SXR) spectral range used to measure structural and material characteristics of semiconductor structures. In some embodiments, Reflective, Small-Angle X-ray Scatterometry measurements are performed with a liquid sheet jet LPP illumination source as described herein.
    Type: Application
    Filed: October 21, 2020
    Publication date: May 6, 2021
    Inventors: Chao Chang, Will Schumaker, Jongjin Kim, Michael Friedmann
  • Patent number: 10859518
    Abstract: Methods and systems for controlling illumination beam spot size for Transmission, Small-Angle X-ray Scatterometry (T-SAXS) measurements of different sized metrology targets are described herein. An X-ray illumination optics subsystem includes one or more focusing optical elements with object and image planes at fixed locations and one or more illumination apertures or slits that independently control magnification and beam divergence. In a further aspect, the illumination source size and shape is controlled, along with magnification and beam divergence. In this manner, beam divergence and illumination spot size on a specimen are independently controlled, while maintaining constant illumination flux.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 8, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Nikolay Artemiev, Michael Friedmann
  • Patent number: 10804167
    Abstract: Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Esen Salcin, Michael Friedmann, Derrick Shaughnessy, Andrei V. Shchegrov, Jonathan M. Madsen, Alexander Kuznetsov
  • Publication number: 20200294774
    Abstract: A process chamber, such as for semiconductor processing equipment, is connected with a recovery unit. The recovery unit includes a first storage tank for buffer gas and a second storage tank for rare gas. Both storage tanks are connected with a column in the recovery unit. The recovery unit and process chamber can operate as a closed system. The rare gas can be transported at a variable flow rate while separation in the recovery unit operates at a constant flow condition.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 17, 2020
    Inventors: Chao Chang, Michael Friedmann
  • Publication number: 20200271569
    Abstract: A collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and a spectrometer to receive the reflected optical beam. The collection system also includes a plurality of aperture masks arranged in a rotatable sequence about an axis parallel to an optical axis. Each aperture mask of the plurality of aperture masks is rotatable into and out of the reflected optical beam between the chuck and the spectrometer to selectively mask the reflected optical beam.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Barry Blasenheim, Noam Sapiens, Michael Friedmann, Pablo Rovira
  • Publication number: 20200274314
    Abstract: A system for pumping laser sustained plasma is disclosed. The system includes a plurality of pump modules configured to generate respective pulses of pump illumination for the laser sustained plasma, wherein at least one pump module is configured to generate a train of pump pulses that is interlaced in time with another train of pump pulses generated by at least one other pump module of the plurality of pump modules. The system further includes a plurality of non-collinear illumination paths configured to direct the respective pulses of pump illumination from the plurality of pump modules into a collection volume of the laser sustained plasma.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 27, 2020
    Inventors: Ilya Bezel, Matthew Derstine, William Schumaker, Michael Friedmann
  • Publication number: 20200243400
    Abstract: Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Inventors: David Y. Wang, Esen Salcin, Michael Friedmann, Derrick Shaughnessy, Andrei V. Shchegrov, Jonathan M. Madsen, Alexander Kuznetsov
  • Patent number: 10663392
    Abstract: In some embodiments, a collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and an aperture mask to provide an adjustable aperture for the reflected optical beam. The aperture mask includes a plurality of opaque plates with adjustable positions. The collection system also includes a spectrometer to receive the reflected optical beam. The aperture mask is situated between the chuck and the spectrometer along the optical axis.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 26, 2020
    Assignee: KLA Corporation
    Inventors: Barry Blasenheim, Noam Sapiens, Michael Friedmann, Pablo Rovira
  • Patent number: 10451412
    Abstract: Disclosed is a method for determining an overlay error between at least two layers in a multiple layer sample. An imaging optical system is used to measure multiple measured optical signals from multiple periodic targets on the sample, and the targets each have a first structure in a first layer and a second structure in a second layer. There are predefined offsets between the first and second structures A scatterometry overlay technique is used to analyze the measured optical signals of the periodic targets and the predefined offsets of the first and second structures of the periodic targets to thereby determine an overlay error between the first and second structures of the periodic targets. The scatterometry overlay technique is a phase based technique, and the imaging optical system is configured to have an illumination and/or collection numerical aperture (NA) and/or spectral band selected so that a specific diffraction order is collected and measured for the plurality of measured optical signals.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: October 22, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Michael Adel, Walter D. Mieher, Ibrahim Abdulhalim, Ady Levy, Michael Friedmann
  • Patent number: 10365211
    Abstract: Methods and systems for measuring a specimen while actively stabilizing an optical measurement beam subject to changes in polarization by a rotating polarizer element are described herein. Movement of a focused measurement beam spot induced by a rotating polarizer element is compensated by actively controlling the position of an optical element in the beam path based on measurements of the focused measurement beam spot. Both feedback and feedforward control schemes may be employed to reduce beam position error. In one aspect, a measurement system includes a rotating optical polarizer, a beam position sensor, and an active beam compensating element in the illumination beam path, the collection beam path, or both. Beam position errors are detected by the beam position sensor, and control commands are communicated to the active beam compensating element to reduce the measured beam position errors.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: July 30, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Barry Blasenheim, Noam Sapiens, Michael Friedmann
  • Publication number: 20190094130
    Abstract: Methods and systems for measuring a specimen while actively stabilizing an optical measurement beam subject to changes in polarization by a rotating polarizer element are described herein. Movement of a focused measurement beam spot induced by a rotating polarizer element is compensated by actively controlling the position of an optical element in the beam path based on measurements of the focused measurement beam spot. Both feedback and feedforward control schemes may be employed to reduce beam position error. In one aspect, a measurement system includes a rotating optical polarizer, a beam position sensor, and an active beam compensating element in the illumination beam path, the collection beam path, or both. Beam position errors are detected by the beam position sensor, and control commands are communicated to the active beam compensating element to reduce the measured beam position errors.
    Type: Application
    Filed: July 12, 2018
    Publication date: March 28, 2019
    Inventors: Barry Blasenheim, Noam Sapiens, Michael Friedmann
  • Publication number: 20190049365
    Abstract: In some embodiments, a collection system of a semiconductor metrology tool includes a chuck to support a target from which an optical beam is reflected and an aperture mask to provide an adjustable aperture for the reflected optical beam. The aperture mask includes a plurality of opaque plates with adjustable positions. The collection system also includes a spectrometer to receive the reflected optical beam. The aperture mask is situated between the chuck and the spectrometer along the optical axis.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 14, 2019
    Inventors: Barry Blasenheim, Noam Sapiens, Michael Friedmann, Pablo Rovira