Patents by Inventor Michael James Brownlow

Michael James Brownlow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536710
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: December 27, 2022
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Patent number: 11176890
    Abstract: A display system includes a display panel comprising a plurality of pixel circuits, and a measurement and data processing unit that is external to the display panel. Each pixel circuit includes a light-emitting device having a first terminal connected to a first voltage supply and a second terminal opposite from the first terminal; a first transistor connected between a data voltage supply line from the measurement and data processing unit and the second terminal of the light emitting device; and a second transistor connected between the second terminal of the light-emitting device and a sample line to the measurement and data processing unit. The measurement and data processing unit samples a measured voltage at the second terminal of the light-emitting device through the sample line and outputs a data voltage to the light-emitting device based on the measured voltage to compensate variations in properties of the light-emitting device.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: November 16, 2021
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Patent number: 11074864
    Abstract: A pixel circuit compensates the threshold voltage variations of the drive transistor with an ultra-short one horizontal (1H) time, with additionally removing the possible memory effects associated with the light-emitting device and the drive transistor from the previous frame. An ultra-short 1H time (<2 ?s) is achieved via separation of threshold compensation of the drive transistor and data programming phases. The pixel circuit has a two-capacitor configuration, whereby a first capacitor is used for drive transistor threshold compensation, and a second capacitor is used to store the data voltage during a data pre-loading phase. Two transistors are employed to electrically connect the gate of the drive transistor to the second capacitor that stores the data voltage, wherein each transistor in this dual transistor configuration is controlled by a different control signal.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: July 27, 2021
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow
  • Patent number: 11069292
    Abstract: A pixel circuit for driving a light-emitting device for a display device is operable in an initialization phase, a compensation phase, a data programming phase, and an emission phase. The one horizontal time is minimized while maintaining accurate compensation of the threshold voltage of the drive transistor, and the pixel circuit further employs a varactor to compensate for variations in the threshold voltage of the drive transistor and for parasitic capacitances that arise within the pixel circuit. A capacitance of the varactor varies with a voltage at a node N1 constituting an electrical connection during the compensation phase of the drive transistor, the light-emitting device, a storage capacitor, and the varactor. The use of the capacitance variation of the varactor accounts for a variation in the threshold voltage of the drive transistor and for parasitic capacitances in the pixel circuit. The varactor may be implemented as a thin film transistor that operates as a variable capacitor.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: July 20, 2021
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Adnan Heganovic, Tong Lu, Michael James Brownlow
  • Patent number: 11061015
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 13, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Publication number: 20210148890
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 20, 2021
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Patent number: 11011113
    Abstract: A pixel circuit compensates the threshold voltage variations of the drive transistor with an ultra-short one horizontal (1H) time, with additionally removing the possible memory effects associated with the light-emitting device and the drive transistor from the previous frame. An ultra-short 1H time (<2 ?s) is achieved via separation of threshold compensation of the drive transistor and data programming phases. The pixel circuit has a two-capacitor configuration, whereby a first capacitor is used for drive transistor threshold compensation, and a second capacitor is used to store the data voltage during a data pre-loading phase. Two transistors are employed to electrically connect the gate and source of the drive transistor to a common initialization voltage during an initialization phase to reset circuit voltages for the current frame.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 18, 2021
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Patent number: 10984712
    Abstract: A display system includes a pixel circuit and an external compensation system that is operable with the pixel circuit to compensate for differences in a property of the drive transistor and/or light-emitting device.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: April 20, 2021
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Michael James Brownlow, Tong Lu
  • Publication number: 20210020104
    Abstract: A pixel circuit is operable in initialization, data programming, a threshold compensation, and emission phases. The pixel circuit includes a drive transistor configured to control an amount of current to a light-emitting device during the emission phase depending upon a voltage applied to a gate of the drive transistor. A first ultra-low leakage oxide transistor is employed as a data switch device, and the data voltage is applied to the gate of the drive transistor through the first ultra-low leakage oxide transistor during the data programming phase. A second ultra-low leakage oxide transistor is employed as an initialization switch device. The second ultra-low leakage oxide transistor is in an on state during the initialization, data programming, and threshold compensation phases, and the initialization voltage is applied to the gate of the drive transistor through the second ultra-low leakage oxide transistor during the initialization phase.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Patent number: 10885843
    Abstract: A pixel circuit for a display device operable in an initialization phase, a compensation phase, a data programming phase, and an emission phase, whereby the one horizontal time is minimized while maintaining accurate compensation of the threshold voltages of the drive transistors, and further accounting for any variations in the voltage supplies. The pixel circuit includes a first drive transistor configured to control an amount of current to a light-emitting device during an emission phase depending upon voltages applied to a gate and a first terminal of the first drive transistor; and a second drive transistor that is configured as a source follower, wherein a first terminal of the second drive transistor is connected to a first power supply line and a second terminal of the second drive transistor is connected to a first terminal of the first drive transistor. The first drive transistor is one of a p-type or n-type transistor and the second drive transistor is the other of a p-type or n-type transistor.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: January 5, 2021
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Patent number: 10878756
    Abstract: A pixel circuit is operable in initialization, data programming, threshold compensation, and emission phases. The pixel circuit includes a drive transistor configured to control an amount of current to a light-emitting device during the emission phase depending upon a voltage applied to a gate of the drive transistor. A first ultra-low leakage oxide transistor is employed as a data switch device, and the data voltage is applied to the gate of the drive transistor through the first ultra-low leakage oxide transistor during the data programming phase. A second ultra-low leakage oxide transistor is employed as an initialization switch device. The second ultra-low leakage oxide transistor is in an on state during the initialization, data programming, and threshold compensation phases, and the initialization voltage is applied to the gate of the drive transistor through the second ultra-low leakage oxide transistor during the initialization phase.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: December 29, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Publication number: 20200349889
    Abstract: A display system includes a display panel comprising a plurality of pixel circuits, and a measurement and data processing unit that is external to the display panel. Each pixel circuit includes a light-emitting device having a first terminal connected to a first voltage supply and a second terminal opposite from the first terminal; a first transistor connected between a data voltage supply line from the measurement and data processing unit and the second terminal of the light emitting device; and a second transistor connected between the second terminal of the light-emitting device and a sample line to the measurement and data processing unit. The measurement and data processing unit samples a measured voltage at the second terminal of the light-emitting device through the sample line and outputs a data voltage to the light-emitting device based on the measured voltage to compensate variations in properties of the light-emitting device.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Patent number: 10783830
    Abstract: A pixel circuit has enhanced performance by minimizing noise effects from the data and reference voltage lines. To prevent data line noise from interfering with the drive transistor gate voltage during emission, a triple gate isolation is used between the data voltage line and the gate of the drive transistor by which three transistors are connected between the data voltage line and the gate of the drive transistor. To further improve the isolation, one of the middle nodes of the triple gate farthest from the data voltage line is connected to one floating node that is connectable to a reference voltage during the threshold compensation phase. A first capacitor is used for the threshold compensation, and a second capacitor is used to scale the data voltage during programming. The threshold compensation and data programming operations are thereby independent of each other to minimize programming time.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: September 22, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow
  • Patent number: 10762843
    Abstract: A display system includes a display panel comprising a plurality of pixel circuits, and a measurement and data processing unit that is external to the display panel. Each pixel circuit includes a light-emitting device having a first terminal connected to a first voltage supply and a second terminal opposite from the first terminal; a first transistor connected between a data voltage supply line from the measurement and data processing unit and the second terminal of the light emitting device; and a second transistor connected between the second terminal of the light-emitting device and a sample line to the measurement and data processing unit. The measurement and data processing unit samples a measured voltage at the second terminal of the light-emitting device through the sample line and outputs a data voltage to the light-emitting device based on the measured voltage to compensate variations in properties of the light-emitting device.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 1, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow, Tim Michael Smeeton
  • Patent number: 10706782
    Abstract: A pixel circuit includes a drive transistor that controls an amount of current to a light-emitting device, and a second transistor connected to the gate of the drive transistor and a second terminal of the drive transistor, such that when the second transistor is in an on state the drive transistor becomes diode-connected. A threshold voltage of the drive transistor is compensated during a compensation phase while the drive transistor is diode connected. The light-emitting device is connected between the drive transistor and at a second node to a first voltage input. The pixel circuit further includes a storage capacitor having a first plate connected to the gate of the drive transistor, and a programming capacitor having a first plate connected to a second plate of the storage capacitor, and a second plate of the programming capacitor is electrically connected to a data voltage input during a data programming phase.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: July 7, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow
  • Publication number: 20200184888
    Abstract: A display system includes a pixel circuit and an external compensation system that is operable with the pixel circuit to compensate for differences in a property of the drive transistor and/or light-emitting device.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 11, 2020
    Inventors: Michael James Brownlow, Tong Lu
  • Patent number: 10650752
    Abstract: A pixel circuit for a display device is operable in a compensation phase, a data programming phase, and an emission phase, whereby the one horizontal time is minimized while maintaining accurate compensation of the threshold voltage of the drive transistor. The pixel circuit includes: a storage capacitor having a first plate connected to a third terminal of the drive transistor that receives a voltage input, and a second plate connected to the gate of the drive transistor; and a programming capacitor having a first plate connected to second and third transistors, and a second plate of the programming capacitor is electrically connected to a data voltage input during the data programming phase, wherein the first plate of the programming capacitor is electrically connected to the second plate of the storage capacitor when the second transistor is in an on state.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 12, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tong Lu, Michael James Brownlow
  • Publication number: 20200135106
    Abstract: A pixel circuit for a display device is operable in a compensation phase, a data programming phase, and an emission phase, whereby the one horizontal time is minimized while maintaining accurate compensation of the threshold voltage of the drive transistor. The pixel circuit includes: a storage capacitor having a first plate connected to a third terminal of the drive transistor that receives a voltage input, and a second plate connected to the gate of the drive transistor; and a programming capacitor having a first plate connected to second and third transistors, and a second plate of the programming capacitor is electrically connected to a data voltage input during the data programming phase, wherein the first plate of the programming capacitor is electrically connected to the second plate of the storage capacitor when the second transistor is in an on state.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 30, 2020
    Inventors: Tong Lu, Michael James Brownlow
  • Publication number: 20200135105
    Abstract: A pixel circuit includes a drive transistor that controls an amount of current to a light-emitting device, and a second transistor connected to the gate of the drive transistor and a second terminal of the drive transistor, such that when the second transistor is in an on state the drive transistor becomes diode-connected. A threshold voltage of the drive transistor is compensated during a compensation phase while the drive transistor is diode connected. The light-emitting device is connected between the drive transistor and at a second node to a first voltage input. The pixel circuit further includes a storage capacitor having a first plate connected to the gate of the drive transistor, and a programming capacitor having a first plate connected to a second plate of the storage capacitor, and a second plate of the programming capacitor is electrically connected to a data voltage input during a data programming phase.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 30, 2020
    Inventors: Tong Lu, Michael James Brownlow
  • Patent number: 10636357
    Abstract: A display system includes a pixel circuit and an analogue external compensation system that is operable with the pixel circuit to compensate for differences in a property of the drive transistor and/or light-emitting device. The display system includes a pixel circuit having a drive transistor configured to control an amount of current to a light-emitting, and an analogue external compensation system that is operable with the pixel circuit. The analogue external compensation system includes a current regulator that regulates a current applied to a first terminal of the pixel circuit to approximate a current supplied through the drive transistor to the light-emitting device; a current mirror that receives the current from the regulator and mirrors said current from the regulator to output a mirrored current; a current source that supplies a programming reference current; and an integrator that receives inputs of the mirrored current and the programming reference current.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: April 28, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Michael James Brownlow, Tong Lu