Patents by Inventor Michael RIZZOLO

Michael RIZZOLO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190067087
    Abstract: A method of forming a semiconductor device includes forming a dielectric spacer along sidewalls of a plurality of interconnect openings extending through a sacrificial dielectric layer and a first dielectric layer until a top portion of a first conductive material, the dielectric spacer includes a dielectric material having a dielectric constant higher than a dielectric constant of the sacrificial dielectric layer and higher than a dielectric constant of the first dielectric layer, conformally depositing a barrier liner within the plurality of interconnect openings above and in direct contact with the dielectric spacer, filling the interconnect openings with a second conductive material, removing the sacrificial dielectric layer to expose portions of the dielectric spacer above the first dielectric layer, and reducing a thickness of exposed portions of the dielectric spacer.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 28, 2019
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Huai Huang, Christopher J. Penny, Michael Rizzolo, Hosadurga Shobha
  • Patent number: 10211151
    Abstract: A method of forming a self-aligned pattern of vias in a semiconductor device comprises etching a pattern of lines that contain notches that are narrower than other parts of the line. Thereafter, vias are created where the notches are located. The locations of the vias are such that the effect of blown-out areas is minimized. Thereafter, the lines are etched and the vias and line areas are filled. The layers are planarized such that the metal fill is level with a surrounding ultra-low-k dielectric. Additional metal layers, lines, and vias can be created. Other embodiments are also described herein.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. Deprospo, Michael Rizzolo, Nicole A. Saulnier
  • Patent number: 10211155
    Abstract: Methods are provided for fabricating metallic interconnect structures having reduced electrical resistivity that is obtained by applying mechanical strain to the metallic interconnect structures, as well as semiconductor structures having metallic interconnect structures formed with permanent mechanical strain to provide reduced electrical resistivity. For example, a method includes forming a metallic interconnect structure in an interlevel dielectric (ILD) layer of a back-end-of-line (BEOL) structure of a semiconductor structure, and forming a stress layer in contact with the metallic interconnect structure. A thermal anneal process is performed to cause the stress layer to expand and apply compressive strain to the metallic interconnect structure and permanently deform at least a portion of the metallic interconnect structure into a stress memorized state of compressive strain.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Patent number: 10204828
    Abstract: A method for forming a semiconductor structure using first and second conductive materials, and having first and second trenches with first and second critical dimensions. The second conductive material exhibits a lower resistivity than the first conductive material at a film thickness corresponding to the second critical dimension and the second conductive material exhibits a higher resistivity than the first conductive material at a film thickness corresponding to the first critical dimension. An initial semiconductor structure has the first trench having the first critical dimension and the second trench having the second critical dimension. The second critical dimension is larger than the first critical dimension. A first conductive structure made from one of the first and second conductive materials is formed in the first trench. A second conductive structure made from another of the first and second conductive materials is formed in the second trench.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Benjamin D. Briggs, Lawrence A. Clevenger, Koichi Motoyama, Cornelius Brown Peethala, Michael Rizzolo, Gen Tsutsui
  • Patent number: 10195901
    Abstract: Techniques are provided for alerting drivers of hazardous driving conditions using the sensing capabilities of wearable mobile technology. In one aspect, a method for alerting drivers of hazardous driving conditions includes the steps of: collecting real-time data from a driver of a vehicle, wherein the data is collected via a mobile device worn by the driver; determining whether the real-time data indicates that a hazardous driving condition exists; providing feedback to the driver if the real-time data indicates that a hazardous driving condition exists, and continuing to collect data from the driver in real-time if the real-time data indicates that a hazardous driving condition does not exist. The real-time data may also be collected and used to learn characteristics of the driver. These characteristics can be compared with the data being collected to help determine, in real-time, whether the driving behavior is normal and whether a hazardous driving condition exists.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: February 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Jonathan H. Connell, II, Nalini K. Ratha, Michael Rizzolo
  • Patent number: 10192829
    Abstract: Low-temperature techniques for doping of Cu interconnects based on interfacially-assisted thermal diffusion are provided. In one aspect, a method of forming doped copper interconnects includes the steps of: patterning at least one trench in a dielectric material; forming a barrier layer lining the trench; forming a metal liner on the barrier layer; depositing a seed layer on the metal liner; plating a Cu fill into the trench to form Cu interconnects; removing a portion of a Cu overburden to access an interface between the metal liner and the Cu fill; depositing a dopant layer; and diffusing a dopant(s) from the dopant layer along the interface to form a Cu interconnect doping layer between the metal liner and the Cu fill. Alternatively, the overburden and the barrier layer/metal liner can be completely removed, and the dopant layer deposited selectively on the Cu fill. An interconnect structure is also provided.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: January 29, 2019
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Chao-Kun Hu, Takeshi Nogami, Deepika Priyadarshini, Michael Rizzolo
  • Publication number: 20190013278
    Abstract: A semiconductor device is provided and includes first and second dielectrics, first and second conductive elements, a self-formed-barrier (SFB) and a liner. The first and second dielectrics are disposed with one of first-over-second dielectric layering and second-over-first dielectric layering. The first and second conductive elements are respectively suspended at least partially within a lower one of the first and second dielectrics and at least partially within the other one of the first and second dielectrics. The self-formed-barrier (SFB) is formed about a portion of one of the first and second conductive elements which is suspended in the second dielectric. The liner is deposited about a portion of the other one of the first and second conductive elements which is partially suspended in the first dielectric.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Takeshi Nogami, Christopher J. Penny, Michael Rizzolo
  • Patent number: 10170411
    Abstract: A method for via alignment includes forming first airgaps between interconnect structures and depositing a pinch off layer to close off openings to the first airgaps. A protection layer is formed in divots in the pinch off layer. The protection layer and the pinch off layer are planarized to form a surface where the protection layer remains in the divots. An interlevel dielectric layer (ILD) is deposited on the surface. The ILD and the pinch off layer are etched using the protection layer as an etch stop to align a via and expose the interconnect structure through the via.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Christopher J. Penny, Michael Rizzolo
  • Publication number: 20180366141
    Abstract: Embodiments of the present invention are directed to a computer program product for generating a personality shift determination. The computer program product can include a computer readable storage medium having program instructions embodied therewith, wherein the instructions are executable by a processor to cause the processor to perform a method. The method can include receiving a real-time audio input. The method can also include generating a real-time personality trait identification. The method can also include generating a current trait classification for the real-time personality trait identification. The method can also include comparing the current trait classification to a historic rate classification. The method can also include generating a personality shift determination.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Maryam ASHOORI, Benjamin D. BRIGGS, Lawrence A. CLEVENGER, Leigh Anne H. CLEVENGER, Michael RIZZOLO
  • Publication number: 20180361225
    Abstract: Embodiments are directed to a support apparatus. The support apparatus might comprise a body configured to support an entity. The body might comprise a material that has a physical property. The support apparatus might further comprise a coupler system configured to couple electric current from a power source to the material. The material is arranged such that coupling an electric current to the material changes the physical property of the material. Embodiments are further directed to a method. The method might comprise forming one or more cavities in a support apparatus. The method might further comprise providing one or more couplers in electrical contact with each of the one or more channels. The method further comprises filling each of the one or more cavities with a fluid that has electrically changeable rigidity. Finally, the method might comprise connecting a power source to each of the one or more couplers.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Michael Rizzolo
  • Publication number: 20180366640
    Abstract: A method of forming magnetic device structures and electrical contacts, including removing a portion of a second interlayer dielectric (ILD) layer to expose an underlying portion of a cap layer in a first device region, wherein the cap layer is on a first ILD layer, while leaving an ILD block in a second device region, forming a spacer layer on the exposed portion of the cap layer in the first device region, forming an electrical contact layer on the spacer layer in the first device region, forming a magnetic device layer on the electrical contact layer and ILD block, removing portions of the magnetic device layer to form a magnetic device stack on the ILD block, and removing portions of the electrical contact layer to form electrical contact pillars, wherein the portions of the electrical contact layer and portions of the magnetic device layer are removed at the same time.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Lawrence A. Clevenger, Liying Jiang, Sebastian Naczas, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180366142
    Abstract: Embodiments of the present invention are directed to a computer program product for generating a personality shift determination. The computer program product can include a computer readable storage medium having program instructions embodied therewith, wherein the instructions are executable by a processor to cause the processor to perform a method. The method can include receiving a real-time audio input. The method can also include generating a real-time personality trait identification. The method can also include generating a current trait classification for the real-time personality trait identification. The method can also include comparing the current trait classification to a historic rate classification. The method can also include generating a personality shift determination.
    Type: Application
    Filed: November 6, 2017
    Publication date: December 20, 2018
    Inventors: Maryam ASHOORI, Benjamin D. BRIGGS, Lawrence A. CLEVENGER, Leigh Anne H. CLEVENGER, Michael RIZZOLO
  • Publication number: 20180366408
    Abstract: A method of forming a semiconductor device includes forming a porous dielectric layer including a recessed portion, forming a conductive layer in the recessed portion of the porous dielectric layer, and forming a conformal cap layer on the porous dielectric layer and on the conductive layer in the recessed portion, an upper surface of the porous dielectric layer being exposed through a gap in the conformal cap layer.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 20, 2018
    Inventors: Benjamin David BRIGGS, Lawrence A. CLEVENGER, Bartlef H. DEPROSPO, Huai HUANG, Christopher J. PENNY, Michael RIZZOLO
  • Publication number: 20180354291
    Abstract: An anti-counterfeiting method, system, and non-transitory computer readable medium an anti-counterfeiting system, include a production circuit configured to produce a Directed Self-Assembly (DSA) pattern including a unique pattern, an analysis circuit configured to analyze the unique pattern, an embedding circuit configured to embed the unique pattern on a document, and a verification circuit configured to verify that the unique pattern embedded on the document corresponds to the document.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Inventors: Benjamin David Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Michael Rizzolo
  • Patent number: 10150323
    Abstract: An anti-counterfeiting method, system, and non-transitory computer readable medium, include a production circuit configured to produce a Directed Self-Assembly (DSA) pattern including a unique pattern, an analysis circuit configured to analyze the unique pattern, an embedding circuit configured to embed the unique pattern on a document, and a verification circuit configured to verify that the unique pattern embedded on the document corresponds to the document.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: December 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin David Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Michael Rizzolo
  • Patent number: 10153202
    Abstract: A method of forming an interconnect that in one embodiment includes forming an opening in a dielectric layer, and treating a dielectric surface of the opening in the dielectric layer with a nitridation treatment to convert the dielectric surface to a nitrided surface. The method may further include depositing a tantalum containing layer on the nitrided surface. In some embodiments, the method further includes depositing a metal fill material on the tantalum containing layer. The interconnect formed may include a nitrided dielectric surface, a tantalum and nitrogen alloyed interface that is present on the nitrided dielectric surface, a tantalum layer on the tantalum and nitrogen alloy interface, and a copper fill.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: December 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180351596
    Abstract: A system for a touch screen interface that includes a coating including a plurality of a touch activated microchips; and a projector for projecting a light image onto the coating that is applied to a touch screen substrate. The system also includes an image calibrator that calibrates touch activated microchips in the coating to features of the light image projected onto the coating. The system further includes a receiver for receiving signal from the touch activated microchips when said feature of the light image is activated.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Inventors: Maryam Ashoori, Benjamin D. Briggs, Justin A. Canaperi, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Michael Rizzolo, Spyridon Skordas
  • Publication number: 20180349220
    Abstract: Methods and systems for printing accurate three-dimensional structures include printing a three-dimensional structure according to an original three-dimensional model. The original three-dimensional model is adjusted to reduce measured differences between the printed three-dimensional structure and the original three-dimensional model. A three-dimensional structure is printed according to the adjusted three-dimensional model.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 6, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Christopher J. Penny, Michael Rizzolo, Aldis G. Sipolins
  • Publication number: 20180349535
    Abstract: A method of electrical device manufacturing that includes measuring a first plurality of dimensions and electrical performance from back end of the line (BEOL) structures; and comparing the first plurality of dimensions with a second plurality of dimensions from a process assumption model to determine dimension variations by machine vision image processing. The method further includes providing a plurality of scenarios for process modifications by applying machine image learning to the dimension variations and electrical variations in the in line electrical measurements from the process assumption model. The method further includes receiving production dimension measurements and electrical measurements at a manufacturing prediction actuator. The at least one of the dimensions or electrical measurements received match one of the plurality of scenarios the manufacturing prediction actuator using the plurality of scenarios for process modifications effectuates a process change.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 6, 2018
    Inventors: Prasad Bhosale, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180349538
    Abstract: A method of electrical device manufacturing that includes measuring a first plurality of dimensions and electrical performance from back end of the line (BEOL) structures; and comparing the first plurality of dimensions with a second plurality of dimensions from a process assumption model to determine dimension variations by machine vision image processing. The method further includes providing a plurality of scenarios for process modifications by applying machine image learning to the dimension variations and electrical variations in the in line electrical measurements from the process assumption model. The method further includes receiving production dimension measurements and electrical measurements at a manufacturing prediction actuator. The at least one of the dimensions or electrical measurements received match one of the plurality of scenarios the manufacturing prediction actuator using the plurality of scenarios for process modifications effectuates a process change.
    Type: Application
    Filed: December 7, 2017
    Publication date: December 6, 2018
    Inventors: Prasad Bhosale, Michael Rizzolo, Chih-Chao Yang