Patents by Inventor Min-Hsun Hsieh

Min-Hsun Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8519430
    Abstract: An optoelectronic device includes a substrate and a first transition stack formed on the substrate including at least a first transition layer formed on the substrate and having at least one hollow component formed inside the first transition layer, and a second transition layer wherein the second transition layer is an unintentional doped layer or an undoped layer formed on the first transition layer.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 27, 2013
    Assignee: Epistar Corporation
    Inventors: Wei-Chih Peng, Min-Hsun Hsieh, Ming-Chi Hsu, Wei-Yu Yen, Chun-Kai Wang, Yen-Chih Chen, Schang-Jing Hon, Hsin-Ying Wang, Chien-Kai Chung
  • Patent number: 8486729
    Abstract: A semiconductor light-emitting device having a thinned structure comprises a thinned structure formed between a semiconductor light-emitting structure and a carrier. The manufacturing method comprises the steps of forming a semiconductor light-emitting structure above a substrate; attaching the semiconductor light-emitting structure to a support; thinning the substrate to form a thinned structure; forming or attaching a carrier to the thinned substrate; and removing the support.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: July 16, 2013
    Assignee: Epistar Corporation
    Inventors: Min-Hsun Hsieh, Chih-Chiang Lu, Chien-Yuan Wang, Yen-Wen Chen, Jui-Hung Yeh, Shih-Chin Hung, Yu-Wei Tu, Chun-Yi Wu, Wei-Chih Peng
  • Patent number: 8486742
    Abstract: A method for manufacturing a light-emitting device comprising the steps of: providing a substrate comprising a first surface and a second surface; forming a plurality of cutting lines on the substrate by a laser beam; cleaning the substrate by a chemical solution; and forming a light-emitting stack on an first surface of the substrate after cleaning the substrate.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 16, 2013
    Assignee: Epistar Corporation
    Inventors: Chien-Kai Chung, Ta-Cheng Hsu, Jung-Min Hwang, Min-Hsun Hsieh, Ya-Lan Yang, De-Shan Kuo, Tsun-Kai Ko, Chien-Fu Shen, Ting-Chia Ko, Schang-Jing Hon
  • Patent number: 8450921
    Abstract: A wavelength conversion structure comprises a phosphor layer comprising a first part and a second part formed on the first part, wherein the first part and the second part have a plurality of pores, a first material layer formed in the plurality of pores of the first part, a second material layer formed in the plurality of pores of the second part and a plurality of phosphor particles, wherein the plurality of phosphor particles is distributed in the first material layer and the second material layer.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 28, 2013
    Assignee: Epistar Corporation
    Inventors: Min-Hsun Hsieh, Yi-Jui Huang, Steve Meng-Yuan Hong, Ming-Chi Hsu
  • Patent number: 8405106
    Abstract: A light-emitting device including: a light-emitting stacked layer having first conductivity type semiconductor layer, a light-emitting layer formed on the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer formed on the light-emitting layer, wherein the upper surface of the second conductivity type semiconductor layer is a textured surface; a first planarization layer formed on a first partial of the upper surface of the second conductivity type semiconductor layer; a first transparent conductive oxide layer formed on the first planarization layer and a second partial of the second conductivity type semiconductor layer, including a first portion in contact with the first planarization layer and a second portion having a first plurality of cavities in contact with the second conductivity type semiconductor layer; and a first electrode formed on the first portion of the first transparent conductive oxide layer.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 26, 2013
    Assignee: Epistar Corporation
    Inventors: Tzu-Chieh Hsu, Ching-San Tao, Chen Ou, Min-Hsun Hsieh, Chao-Hsing Chen
  • Patent number: 8405107
    Abstract: A light emitting element includes a carrier, a conductive connecting structure disposed on the carrier, an epitaxial stack structure including at least a first lighting stack and a second lighting stack disposed on the conductive connecting structure, an insulation section disposed between the epitaxial stack structure and the conductive connecting structure, and at least a metal line laid on the surface of the light emitting element, wherein the first light emitting stack further includes two electrodes having different polarity formed thereon; the second lighting stack is electrically connected to the conductive connecting structure at the bottom thereof and includes an electrode formed thereon. The insulation section is disposed below the first lighting stack to make the first lighting stack be insulated from the conductive connecting structure. The metal lines and the conductive connecting structure are electrically connected to each of the lighting stacks in parallel connection or series connection.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: March 26, 2013
    Assignee: Epistar Corporation
    Inventors: Chiu-Lin Yao, Min-Hsun Hsieh, Wen-Huang Liu
  • Publication number: 20130056772
    Abstract: This application discloses a light-emitting device with narrow dominant wavelength distribution and a method of making the same. The light-emitting device with narrow dominant wavelength distribution at least includes a substrate, a plurality of light-emitting stacked layers on the substrate, and a plurality of wavelength transforming layers on the light-emitting stacked layers, wherein the light-emitting stacked layer emits a first light with a first dominant wavelength variation; the wavelength transforming layer absorbs the first light and converts the first light into the second light with a second dominant wavelength variation; and the first dominant wavelength variation is larger than the second dominant wavelength variation.
    Type: Application
    Filed: February 24, 2010
    Publication date: March 7, 2013
    Inventors: Chih-Chiang LU, Shu-Ting Hsu, Yen-Wen Chen, Chien-Yuan Wang, Ru-Shi Liu, Min-Hsun Hsieh
  • Publication number: 20130043786
    Abstract: A wavelength conversion structure comprises a first phosphor layer and a second phosphor layer formed on the first phosphor layer, wherein the first phosphor layer comprises a plurality of first phosphor particles, and the second phosphor layer comprises a plurality of second phosphor particles. The average particle size of the second phosphor particles is not equal to that of the first phosphor particles.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 21, 2013
    Applicant: Epistar Corporation
    Inventors: Min-Hsun HSIEH, Steve Meng-Yuan Hong, Yi-Jui Huang, Ming-Chi Hsu
  • Patent number: 8372673
    Abstract: An embodiment of this invention discloses a method of separating two material systems, which comprises steps of providing a bulk sapphire; forming a nitride system on the bulk sapphire; forming at least two channels between the bulk sapphire and the nitride system; etching at least one inner surface of the channel; and separating the bulk sapphire and the nitride system.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 12, 2013
    Assignee: Epistar Corporation
    Inventors: Ya-Ju Lee, Ta-Cheng Hsu, Min-Hsun Hsieh
  • Publication number: 20130033168
    Abstract: A wavelength conversion structure comprises a phosphor layer comprising a first part and a second part formed on the first part, wherein the first part and the second part have a plurality of pores, a first material layer formed in the plurality of pores of the first part, a second material layer formed in the plurality of pores of the second part and a plurality of phosphor particles, wherein the plurality of phosphor particles is distributed in the first material layer and the second material layer.
    Type: Application
    Filed: July 30, 2012
    Publication date: February 7, 2013
    Inventors: Min-Hsun HSIEH, Yi-Jui HUANG, Steve Meng-Yuan HONG, Ming-Chi HSU
  • Patent number: 8368094
    Abstract: A optoelectronic device comprises a semiconductor stack layer; a first transparent conductive oxide (abbreviate as “TCO” hereinafter) layer located on the semiconductor stack layer, wherein the first TCO layer has at least one opening; and a second TCO layer covering the first TCO layer, wherein the second TCO layer is filled into the opening of the first TCO layer and contacted with the semiconductor stack layer, and one of the first TCO layer and the second TCO layer forms an ohmic contact with the semiconductor stack layer.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: February 5, 2013
    Assignee: Epistar Corporation
    Inventors: Min-Hsun Hsieh, Chien-Yuan Wang, Jin-Ywan Lin, Chiu-Lin Yao
  • Publication number: 20130029440
    Abstract: A semiconductor light-emitting device is disclosed. The semiconductor light-emitting device comprises a multilayer epitaxial structure disposed on a substrate. The substrate has a predetermined lattice direction perpendicular to an upper surface thereof, wherein the predetermined lattice direction is angled toward [0 11] or [01 1] from [100], or toward [011] or [0 11] from [ 100] so that the upper surface of the substrate comprises at least two lattice planes with different lattice plane directions. The multilayer epitaxial structure has a roughened upper surface perpendicular to the predetermined lattice direction. The invention also discloses a method for fabricating a semiconductor light-emitting device.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 31, 2013
    Applicant: Epistar Corporation
    Inventors: Ya-ju LEE, Ta-Cheng Hsu, Ming-Ta Chin, Yen-Wen Chen, Lo Wu-Tsung, Chung-Yuan Li, Min-Hsun Hsieh
  • Publication number: 20130011949
    Abstract: A method of manufacturing a light-emitting device comprising the steps of cutting a substrate by a laser beam to form a cavity in the substrate and generate a by-product directly on the substrate by the cutting, and removing the by-product by a chemical solution containing an acid under a predetermined cleaning temperature.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Epistar Corporation
    Inventors: Chien-Kai CHUNG, Ta-Cheng Hsu, Jung-Min Hwang, Min-Hsun Hsieh, Ya-Lan Yang, De-Shan Kuo, Tsun-Kai Ko, Chien-Fu Shen, Ting-Chia Ko, Schang-Jin Hon
  • Publication number: 20130001624
    Abstract: A light-emitting device includes a semiconductor light-emitting stack; a current injected portion formed on the semiconductor light-emitting stack; an extension portion having a first branch radiating from the current injected portion and having a first width, and a first length greater than the first width, and a second branch extending from the first branch and having a second width larger than the first width, and a second length greater than the second width; and an electrical contact structure between the second branch and the semiconductor light-emitting stack.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Inventors: Chien-Fu HUANG, Min-Hsun HSIEH, Chih-Chiang LU, Chia-Liang HSU, Shih-I CHEN
  • Patent number: 8344353
    Abstract: A light emitting diode having a transparent substrate and a method for manufacturing the same. The light emitting diode is formed by creating two semiconductor multilayers and bonding them. The first semiconductor multilayer is formed on a non-transparent substrate. The second semiconductor multilayer is created by forming an amorphous interface layer on a transparent substrate. The two semiconductor multilayers are bonded and the non-transparent substrate is removed, leaving a semiconductor multilayer with a transparent substrate.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 1, 2013
    Assignee: Epistar Corporation
    Inventors: Min-Hsun Hsieh, Kuen-Ru Chuang, Shu-Wen Sung, Chia-Cheng Liu, Chao-Nien Huang, Shane-Shyan Wey, Chih-Chiang Lu, Ming-Jiunn Jou
  • Patent number: 8344412
    Abstract: The application discloses a light-emitting diode chip level package structure including: a permanent substrate having a first surface and a second surface; a first electrode on the first surface; a second electrode on the second surface; an adhesive layer on where the first surface of the permanent substrate is not covered by the first electrode; a growth substrate on the adhesive layer; a patterned semiconductor structure on the growth substrate; a third electrode and a fourth electrode on the patterned semiconductor structure and electrically connect with the patterned semiconductor structure; an electrical connecting structure on the sidewall of the patterned semiconductor structure electrically connecting the third electrode and the fourth electrode with the first electrode; and an insulation layer located on the side wall of the patterned semiconductor structure and between the electrical connecting structure for electrically insulating the patterned semiconductor structure.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: January 1, 2013
    Assignee: Epistar Corporation
    Inventors: Chia-Liang Hsu, Shu-Ting Hsu, Min-Hsun Hsieh, Chih-Chiang Lu, Alexander Wang
  • Publication number: 20120326185
    Abstract: A light emitting device including a carrying element having two electric conductors connectable to a power source, a light emitting element disposed on the carrying element and electrically connected to the two electric conductors, and at least one correction element electrically connected to the light emitting element, wherein the light emitting element is adapted to provide a light source upon connection of the two electric conductors with the power source, and the at least one correction element allows the light emitting element to have functions of temperature compensation, voltage correction, or surge absorption.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Applicant: EPISTAR CORPORATION
    Inventors: Ming-Te LIN, Hsi-Hsuan YEN, Ming-Yao LIN, Wen-Yung Yeh, Chia-Chang KUO, Sheng Pan HUANG, Min Hsun HSIEH, Chien Yuan WANG
  • Patent number: 8299483
    Abstract: A light-emitting semiconductor apparatus includes a light-emitting structure, a reflective structure, and a carrier. The light-emitting structure includes a first type semiconductor layer, a second type semiconductor layer, and a light-emitting layer positioned between the first type semiconductor layer and the second type semiconductor layer. The reflective structure has a first transparent conductive layer, a first patterned reflective layer, a second transparent conductive layer, and a second patterned reflective layer. The first patterned reflective layer is disposed between the first transparent conductive layer and the second transparent conductive layer, and has an opening for physically connecting the first transparent conductive layer and the second transparent conductive layer. The second transparent conductive layer is disposed between the first patterned reflective layer and the second patterned reflective layer.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: October 30, 2012
    Assignee: Epistar Corporation
    Inventors: Chih-Chiang Lu, Wei-Chih Peng, Chien-Yuan Wang, Wei-Yo Chen, Shiau-Huei San, Min-Hsun Hsieh
  • Publication number: 20120269520
    Abstract: Lighting apparatuses and LED modules capable of both illumination and data transmission are disclosed. An exemplifying lighting apparatus has a LED module and a modulator. The LED module comprises a plurality of LED cells connected as a LED chain having two conductive pads. The light emitted from the LED module is visible. The modulator provides driving current to the LED module to transmit data.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Inventors: Steve M. Hong, Min-Hsun Hsieh
  • Publication number: 20120261695
    Abstract: A light-emitting device includes a first electrode; a light-emitting stacked layer on the first electrode; a first contact layer on the light-emitting stacked layer, wherein the first contact layer includes a first contact link and a plurality of first contact lines connected to the first contact link; a first conductive post in the light-emitting stacked layer and electrically connecting the first electrode and the first contact layer; and a passivation layer between the first conductive post and the light-emitting stacked layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 18, 2012
    Inventors: Yi-Ming Chen, Min-Hsun Hsieh, Chia-Liang Hsu