Patents by Inventor Ming-Hua Yu

Ming-Hua Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230378328
    Abstract: A method includes recessing a semiconductor fin to form a recess, wherein the semiconductor fin protrudes higher than isolation regions on opposite sides of the semiconductor fin, and performing a first epitaxy to grow a first epitaxy layer extending into the recess. The first epitaxy is performed using a first process gas comprising a silicon-containing gas, silane, and a phosphorous-containing gas. The first epitaxy layer has a first phosphorous atomic percentage. The method further includes performing a second epitaxy to grow a second epitaxy layer extending into the recess and over the first epitaxy layer. The second epitaxy is performed using a second process gas comprising the silicon-containing gas, silane, and the phosphorous-containing gas. The second epitaxy layer has a second phosphorous atomic percentage higher than the first phosphorous atomic percentage.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Inventors: Yi-Jing Lee, Ming-Hua Yu
  • Publication number: 20230378181
    Abstract: A semiconductor device includes a substrate, a semiconductor feature protruding from the substrate and extending lengthwise in a first direction, an epitaxial feature directly above the semiconductor feature, and a gate stack adjacent the epitaxial feature. The epitaxial feature comprises a lower portion and an upper portion over the lower portion. The upper portion extends partially through the lower portion in a cross section perpendicular to the first direction. A topmost surface of the upper portion is substantially flat.
    Type: Application
    Filed: July 29, 2023
    Publication date: November 23, 2023
    Inventors: Yi-Jing Lee, Li-Wei Chou, Ming-Hua Yu
  • Patent number: 11824120
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Eric Peng, Chao-Cheng Chen, Chii-Horng Li, Ming-Hua Yu, Shih-Hao Lo, Syun-Ming Jang, Tze-Liang Lee, Ying-Hao Hsieh
  • Patent number: 11797375
    Abstract: A system for debugging server startups incorporated in a method applied in a server includes voltage regulators, a complex programmable logic device (CPLD), a transmitting device, and a display device. The voltage regulators transmit power-on signals required when the server is started. The CPLD receives the power-on signals, collects a second signal from the power on signals, and converts the second signals into a second data. The transmitting device receives the second data and parses the second data into a third data. The displaying device receives the third data and displays power-on signals that do not meet required standard during startup of server, according to the third data.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: October 24, 2023
    Assignee: Fulian Precision Electronics (Tianjin) Co., LTD.
    Inventors: Xiao-Long Zhou, Ming-Hua Yu
  • Patent number: 11769771
    Abstract: A semiconductor device and method of forming the same are disclosed. The semiconductor device includes a substrate, an isolation structure over the substrate, a fin extending from the substrate, and an epitaxial feature over the fin. The epitaxial feature comprises a lower portion and an upper portion. The lower portion extends from the fin and extends above the isolation structure. The upper portion is over the lower portion. The upper portion extends partially through the lower portion in a cross section perpendicular to a lengthwise direction of the fin.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Jing Lee, Li-Wei Chou, Ming-Hua Yu
  • Publication number: 20230290866
    Abstract: In a method for manufacturing a semiconductor device, an isolation insulating layer is formed over a fin structure. A first portion of the fin structure is exposed from and a second portion of the fin structure is embedded in the isolation insulating layer. A dielectric layer is formed over sidewalls of the first portion of the fin structure. The first portion of the fin structure and a part of the second portion of the fin structure in a source/drain region are removed, thereby forming a trench. A source/drain epitaxial structure is formed in the trench using one of a first process or a second process. The first process comprises an enhanced epitaxial growth process having an enhanced growth rate for a preferred crystallographic facet, and the second process comprises using a modified etch process to reduce a width of the source/drain epitaxial structure.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Inventors: Yi-Jing LEE, Ming-Hua YU
  • Publication number: 20230282746
    Abstract: In an embodiment, a device includes a first fin extending from a substrate. The device also includes a first gate stack over and along sidewalls of the first fin. The device also includes a first gate spacer disposed along a sidewall of the first gate stack. The device also includes and a first source/drain region in the first fin and adjacent the first gate spacer, the first source/drain region including a first epitaxial layer on the first fin, the first epitaxial layer having a first dopant concentration of boron. The device also includes and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer having a second dopant concentration of boron, the second dopant concentration being greater than the first dopant concentration.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 7, 2023
    Inventors: Hung-Tai Chang, Han-Yu Tang, Ming-Hua Yu, Yee-Chia Yeo
  • Patent number: 11749756
    Abstract: A method includes forming an implanted region in a substrate. The implanted region is adjacent to a top surface of the substrate. A clean treatment is performed on the top surface of the implanted region. The top surface of the implanted region is baked after the clean treatment. An epitaxial layer is formed on the top surface of the substrate. The epitaxial layer is patterned to form a fin.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Yu Lin, Ming-Hua Yu, Tze-Liang Lee, Chan-Lon Yang
  • Publication number: 20230261052
    Abstract: A method includes forming a fin protruding from a substrate; forming an isolation region surrounding the fin; forming a gate structure extending over the fin and the isolation region; etching the fin adjacent the gate structure to form a recess; forming a source/drain region in the recess, including performing a first epitaxial process to grow a first semiconductor material in the recess, wherein the first epitaxial process preferentially forms facet planes of a first crystalline orientation; and performing a second epitaxial process to grow a second semiconductor material on the first semiconductor material, wherein the second epitaxial process preferentially forms facet planes of a second crystalline orientation, wherein a top surface of the second semiconductor material is above a top surface of the fin; and forming a source/drain contact on the source/drain region.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 17, 2023
    Inventors: Che-Yu Lin, Ming-Hua Yu, Yee-Chia Yeo
  • Publication number: 20230253207
    Abstract: A method includes forming a plurality of semiconductor regions on a wafer, placing the wafer in an etching chamber, globally heating the wafer using a heating source, and projecting a laser beam on the wafer. When the wafer is heated by both of the heating source and the laser beam, the plurality of semiconductor regions on the wafer are etched.
    Type: Application
    Filed: March 29, 2022
    Publication date: August 10, 2023
    Inventors: Han-Yu Tang, Ming-Hua Yu, Yee-Chia Yeo
  • Patent number: 11695063
    Abstract: In a method for manufacturing a semiconductor device, an isolation insulating layer is formed over a fin structure. A first portion of the fin structure is exposed from and a second portion of the fin structure is embedded in the isolation insulating layer. A dielectric layer is formed over sidewalls of the first portion of the fin structure. The first portion of the fin structure and a part of the second portion of the fin structure in a source/drain region are removed, thereby forming a trench. A source/drain epitaxial structure is formed in the trench using one of a first process or a second process. The first process comprises an enhanced epitaxial growth process having an enhanced growth rate for a preferred crystallographic facet, and the second process comprises using a modified etch process to reduce a width of the source/drain epitaxial structure.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Jing Lee, Ming-Hua Yu
  • Patent number: 11688807
    Abstract: In an embodiment, a device includes a first fin extending from a substrate. The device also includes a first gate stack over and along sidewalls of the first fin. The device also includes a first gate spacer disposed along a sidewall of the first gate stack. The device also includes and a first source/drain region in the first fin and adjacent the first gate spacer, the first source/drain region including a first epitaxial layer on the first fin, the first epitaxial layer having a first dopant concentration of boron. The device also includes and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer having a second dopant concentration of boron, the second dopant concentration being greater than the first dopant concentration.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Tai Chang, Han-Yu Tang, Ming-Hua Yu, Yee-Chia Yeo
  • Publication number: 20230168963
    Abstract: A system for debugging server startups incorporated in a method applied in a server includes voltage regulators, a complex programmable logic device (CPLD), a transmitting device, and a display device. The voltage regulators transmit power-on signals required when the server is started. The CPLD receives the power-on signals, collects a second signal from the power on signals, and converts the second signals into a second data. The transmitting device receives the second data and parses the second data into a third data. The displaying device receives the third data and displays power-on signals that do not meet required standard during startup of server, according to the third data.
    Type: Application
    Filed: April 26, 2022
    Publication date: June 1, 2023
    Inventors: XIAO-LONG ZHOU, MING-HUA YU
  • Patent number: 11652105
    Abstract: A method includes forming a gate stack on a first portion of a semiconductor fin, removing a second portion of the semiconductor fin to form a recess, and forming a source/drain region starting from the recess. The formation of the source/drain region includes performing a first epitaxy process to grow a first semiconductor layer, wherein the first semiconductor layer has straight-and-vertical edges, and performing a second epitaxy process to grow a second semiconductor layer on the first semiconductor layer. The first semiconductor layer and the second semiconductor layer are of a same conductivity type.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Chi Tai, Yi-Fang Pai, Tsz-Mei Kwok, Tsung-Hsi Yang, Jeng-Wei Yu, Cheng-Hsiung Yen, Jui-Hsuan Chen, Chii-Horng Li, Yee-Chia Yeo, Heng-Wen Ting, Ming-Hua Yu
  • Publication number: 20230124966
    Abstract: A device includes a semiconductor substrate, a semiconductor fin, a gate structure, a first source/drain epitaxy structure, a second source/drain epitaxy structure, a first dielectric fin sidewall structure, a second dielectric fin sidewall structure. The semiconductor fin is over the semiconductor substrate. The semiconductor fin includes a channel portion and recessed portions on opposite sides of the channel portion. The gate structure is over the channel portion of the semiconductor fin. The first source/drain epitaxy structure and the second source/drain epitaxy structure are over the recessed portions of the semiconductor fin, respectively. The first source/drain epitaxy structure has a round surface. The first dielectric fin sidewall structure and the second dielectric fin sidewall structure are on opposite sides of the first source/drain epitaxy structure. The round surface of the first source/drain epitaxy structure is directly above the first dielectric fin sidewall structure.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing LEE, Tsz-Mei KWOK, Ming-Hua YU, Kun-Mu LI
  • Publication number: 20230123670
    Abstract: Semiconductor devices and methods of forming semiconductor devices are described herein. A method includes forming a first fin and a second fin in a substrate. A low concentration source/drain region is epitaxially grown over the first fin and over the second fin. The material of the low concentration region has less than 50% by volume of germanium. A high concentration contact landing region is formed over the low concentration regions. The material of the high concentration contact landing region has at least 50% by volume germanium. The high concentration contact landing region has a thickness of at least 1 nm over a top surface of the low concentration source/drain region.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Wei-Siang YANG, Ming-Hua YU
  • Publication number: 20230049249
    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: Kun-Mu LI, Tsz-Mei KWOK, Ming-Hua YU, Chan-Lon YANG
  • Patent number: 11574916
    Abstract: A method for manufacturing a semiconductor device includes etching a substrate to form a semiconductor fin. An isolation structure is formed above the substrate and laterally surrounds the semiconductor fin. A fin sidewall structure is formed above the isolation structure and on a sidewall of the semiconductor fin. The semiconductor fin is recessed to expose an inner sidewall of the fin sidewall structure. A source/drain epitaxial structure is grown on the recessed semiconductor fin.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: February 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Tsz-Mei Kwok, Ming-Hua Yu, Kun-Mu Li
  • Patent number: 11569084
    Abstract: A method for removing nodule defects is disclosed. The nodule defects may be formed on a non-selected portion of a semiconductor structure during formation of a semiconductor region on a selected portion of the semiconductor structure. A plasma having a higher selectivity to etch the nodule defects relative to the semiconductor region may be used to selectively remove the nodule defects on the non-selected portion.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: January 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Che-Yu Lin, Chih-Chiang Chang, Chien-Hung Chen, Ming-Hua Yu, Tsung-Hsi Yang, Ting-Yi Huang, Chii-Horng Li, Yee-Chia Yeo
  • Publication number: 20230017768
    Abstract: In an embodiment, an apparatus includes a first pyrometer and a second pyrometer configured to monitor thermal radiation from a first point and a second point on a backside of a wafer, respectively, a first heating source in a first region and a second heating source in a second region of an epitaxial growth chamber, respectively, where a first controller adjusts an output of the first heating source and the second heating source based upon the monitored thermal radiation from the first point and the second point, respectively, a third pyrometer and a fourth pyrometer configured to monitor thermal radiation from a third point and a fourth point on a frontside of the wafer, respectively, where a second controller adjusts a flow rate of one or more precursors injected into the epitaxial growth chamber based upon the monitored thermal radiation from the first, second, third, and fourth points.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Inventors: Li-Ting Wang, Jung-Jen Chen, Ming-Hua Yu, Yee-Chia Yeo