Patents by Inventor Ming-Hua Yu

Ming-Hua Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11532731
    Abstract: Semiconductor devices and methods of forming semiconductor devices are described herein. A method includes forming a first fin and a second fin in a substrate. A low concentration source/drain region is epitaxially grown over the first fin and over the second fin. The material of the low concentration region has less than 50% by volume of germanium. A high concentration contact landing region is formed over the low concentration regions. The material of the high concentration contact landing region has at least 50% by volume germanium. The high concentration contact landing region has a thickness of at least 1 nm over a top surface of the low concentration source/drain region.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Siang Yang, Ming-Hua Yu
  • Publication number: 20220384437
    Abstract: A method includes forming a gate stack on a first portion of a semiconductor fin, removing a second portion of the semiconductor fin to form a recess, and forming a source/drain region starting from the recess. The formation of the source/drain region includes performing a first epitaxy process to grow a first semiconductor layer, wherein the first semiconductor layer has straight-and-vertical edges, and performing a second epitaxy process to grow a second semiconductor layer on the first semiconductor layer. The first semiconductor layer and the second semiconductor layer are of a same conductivity type.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Jung-Chi Tai, Yi-Fang Pai, Tsz-Mei Kwok, Tsung-Hsi Yang, Jeng-Wei Yu, Cheng-Hsiung Yen, Jui-Hsuan Chen, Chii-Horng Li, Yee-Chia Yeo, Heng-Wen Ting, Ming-Hua Yu
  • Publication number: 20220367639
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Tesuji UENO, Ming-Hua YU, Chan-Lon YANG
  • Patent number: 11489074
    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Ming-Hua Yu, Chan-Lon Yang
  • Publication number: 20220344508
    Abstract: A method includes forming a first semiconductor fin on a substrate, forming a source/drain region in the first semiconductor fin, depositing a capping layer on the source/drain region, where the capping layer includes a first boron concentration higher than a second boron concentration of the source/drain region, etching an opening through the capping layer, the opening exposing the source/drain region, forming a silicide layer on the exposed source/drain region and forming a source/drain contact on the silicide layer.
    Type: Application
    Filed: January 24, 2022
    Publication date: October 27, 2022
    Inventors: Chih-Sheng Huang, Chih-Chiang Chang, Ming-Hua Yu, Yee-Chia Yeo
  • Publication number: 20220328660
    Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin in an n-type Fin Field-Effect (FinFET) region and a p-type FinFET region, respectively, forming a first dielectric fin and a second dielectric fin in the n-type FinFET region and the p-type FinFET region, respectively, forming a first epitaxy mask to cover the second semiconductor fin and the second dielectric fin, performing a first epitaxy process to form an n-type epitaxy region based on the first semiconductor fin, removing the first epitaxy mask, forming a second epitaxy mask to cover the n-type epitaxy region and the first dielectric fin, performing a second epitaxy process to form a p-type epitaxy region based on the second semiconductor fin, and removing the second epitaxy mask. After the second epitaxy mask is removed, a portion of the second epitaxy mask is left on the first dielectric fin.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 13, 2022
    Inventors: Chih-Chiang Chang, Ming-Hua Yu, Li-Li Su
  • Patent number: 11456360
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: September 27, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang
  • Publication number: 20220293415
    Abstract: A method for removing nodule defects is disclosed. The nodule defects may be formed on a non-selected portion of a semiconductor structure during formation of a semiconductor region on a selected portion of the semiconductor structure. A plasma having a higher selectivity to etch the nodule defects relative to the semiconductor region may be used to selectively remove the nodule defects on the non-selected portion.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 15, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Che-Yu LIN, Chih-Chiang CHANG, Chien-Hung CHEN, Ming-Hua YU, Tsung-Hsi YANG, Ting-Yi HUANG, Chii-Horng LI, Yee-Chia YEO
  • Publication number: 20220293601
    Abstract: A semiconductor device and method of forming the same are disclosed. The semiconductor device includes a substrate, an isolation structure over the substrate, a fin extending from the substrate, and an epitaxial feature over the fin. The epitaxial feature comprises a lower portion and an upper portion. The lower portion extends from the fin and extends above the isolation structure. The upper portion is over the lower portion. The upper portion extends partially through the lower portion in a cross section perpendicular to a lengthwise direction of the fin.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 15, 2022
    Inventors: Yi-Jing Lee, Li-Wei Chou, Ming-Hua Yu
  • Patent number: 11444181
    Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin in an n-type Fin Field-Effect (FinFET) region and a p-type FinFET region, respectively, forming a first dielectric fin and a second dielectric fin in the n-type FinFET region and the p-type FinFET region, respectively, forming a first epitaxy mask to cover the second semiconductor fin and the second dielectric fin, performing a first epitaxy process to form an n-type epitaxy region based on the first semiconductor fin, removing the first epitaxy mask, forming a second epitaxy mask to cover the n-type epitaxy region and the first dielectric fin, performing a second epitaxy process to form a p-type epitaxy region based on the second semiconductor fin, and removing the second epitaxy mask. After the second epitaxy mask is removed, a portion of the second epitaxy mask is left on the first dielectric fin.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chiang Chang, Ming-Hua Yu, Li-Li Su
  • Publication number: 20220246611
    Abstract: An embodiment includes a first fin extending from a substrate. The device also includes a first gate stack over and along sidewalls of the first fin. The device also includes a first gate spacer disposed along a sidewall of the first gate stack. The device also includes a first epitaxial source/drain region in the first fin and adjacent the first gate spacer, an outer surface of the epitaxial first source/drain region having more than eight facets in a first plane, the first plane being orthogonal to a top surface of the substrate.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Han-Yu Tang, Hung-Tai Chang, Ming-Hua Yu, Yee-Chia Yeo
  • Publication number: 20220181440
    Abstract: A method of forming a semiconductor device includes depositing a p-type semiconductor layer over a portion of a semiconductor substrate, depositing a semiconductor layer over the p-type semiconductor layer, wherein the semiconductor layer is free from p-type impurities, forming a gate stack directly over a first portion of the semiconductor layer, and etching a second portion of the semiconductor layer to form a trench extending into the semiconductor layer. At least a surface of the p-type semiconductor layer is exposed to the trench. A source/drain region is formed in the trench. The source/drain region is of n-type.
    Type: Application
    Filed: February 21, 2022
    Publication date: June 9, 2022
    Inventors: Tsung-Hsi Yang, Ming-Hua Yu, Jeng-Wei Yu
  • Publication number: 20220181320
    Abstract: A device includes first and second semiconductor fins, first, second, third and fourth fin sidewall spacers, and first and second epitaxy structures. The first and second fin sidewall spacers are respectively on opposite sides of the first semiconductor fin. The third and fourth fin sidewall spacers are respectively on opposite sides of the second semiconductor fin. The first and third fin sidewall spacers are between the first and second semiconductor fins and have smaller heights than the second and fourth fin sidewall spacers. The first and second epitaxy structures are respectively on the first and second semiconductor fins and merged together.
    Type: Application
    Filed: February 23, 2022
    Publication date: June 9, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing LEE, Kun-Mu LI, Ming-Hua YU, Tsz-Mei KWOK
  • Patent number: 11355500
    Abstract: A static random access memory (SRAM) cell includes a semiconductor fin, a first gate structure, a second gate structure, an epitaxy structure, and a first fin sidewall structure. The first gate structure crosses the semiconductor fin to form a pull-down (PD) transistor. The second gate structure crosses the semiconductor fin to form a pull-gate (PG) transistor. The epitaxy structure is on the semiconductor fin and between the first and second gate structures. The first fin sidewall structure is on a first side of the epitaxy structure and between the first and second gate structures. A method for manufacturing the semiconductor device is also disclosed.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: June 7, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Tsz-Mei Kwok, Ming-Hua Yu, Kun-Mu Li
  • Publication number: 20220131006
    Abstract: In an embodiment, a device includes a first fin extending from a substrate. The device also includes a first gate stack over and along sidewalls of the first fin. The device also includes a first gate spacer disposed along a sidewall of the first gate stack. The device also includes and a first source/drain region in the first fin and adjacent the first gate spacer, the first source/drain region including a first epitaxial layer on the first fin, the first epitaxial layer having a first dopant concentration of boron. The device also includes and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer having a second dopant concentration of boron, the second dopant concentration being greater than the first dopant concentration.
    Type: Application
    Filed: March 29, 2021
    Publication date: April 28, 2022
    Inventors: Hung-Tai Chang, Han-Yu Tang, Ming-Hua Yu, Yee-Chia Yeo
  • Patent number: 11315837
    Abstract: An embodiment is a device including a first fin extending from a substrate, a first gate stack over and along sidewalls of the first fin, a first gate spacer disposed along a sidewall of the first gate stack, and a first epitaxial source/drain region in the first fin and adjacent the first gate spacer. The first epitaxial source/drain region including a first epitaxial layer on the first fin, the first epitaxial layer including silicon and carbon, a second epitaxial layer on the first epitaxial layer, the second epitaxial layer having a different material composition than the first epitaxial layer, the first epitaxial layer separating the second epitaxial layer from the first fin, and a third epitaxial layer on the second epitaxial layer, the third epitaxial layer having a different material composition than the first epitaxial layer.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 26, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jing Lee, Tsung-Hsi Yang, Ming-Hua Yu
  • Patent number: 11276692
    Abstract: A method for manufacturing an integrated circuit is provided. The method includes forming first and second semiconductor fins; forming first and second dielectric fin sidewall structures on opposite sidewalls of the first semiconductor fin, wherein the first dielectric fin sidewall structure is higher than the second dielectric fin sidewall structure, and the second dielectric fin sidewall structure is between the first and second semiconductor fins; recessing at least a portion of the first semiconductor fin between the first and second dielectric fin sidewall structures until a top of the recessed portion of the first semiconductor fin is lower than a top of the first dielectric fin sidewall structure; and forming a first epitaxy structure on the recessed portion of the first semiconductor fin.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Kun-Mu Li, Ming-Hua Yu, Tsz-Mei Kwok
  • Patent number: 11276693
    Abstract: A semiconductor device and method of forming the same are disclosed. The method of forming a semiconductor device includes providing a substrate, an isolation structure over the substrate, and at least two fins extending from the substrate and through the isolation structure; etching the at least two fins, thereby forming at least two trenches; growing first epitaxial features in the at least two trenches; growing second epitaxial features over the first epitaxial features in a first growth condition; and after the second epitaxial features reach a target critical dimension, growing the second epitaxial features in a second growth condition different from the first growth condition.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Li-Wei Chou, Ming-Hua Yu
  • Patent number: 11257908
    Abstract: A method of forming a semiconductor device includes depositing a p-type semiconductor layer over a portion of a semiconductor substrate, depositing a semiconductor layer over the p-type semiconductor layer, wherein the semiconductor layer is free from p-type impurities, forming a gate stack directly over a first portion of the semiconductor layer, and etching a second portion of the semiconductor layer to form a trench extending into the semiconductor layer. At least a surface of the p-type semiconductor layer is exposed to the trench. A source/drain region is formed in the trench. The source/drain region is of n-type.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Hsi Yang, Ming-Hua Yu, Jeng-Wei Yu
  • Patent number: 11257951
    Abstract: A method of manufacturing a semiconductor device includes forming a first gate stack over a substrate. The method further includes etching the substrate to define a cavity. The method further includes growing a first epitaxial (epi) material in the cavity, wherein the first epi material includes a first upper surface having a first crystal plane. The method further includes growing a second epi material on the first epi material, wherein the second epi material includes a second upper surface having the first crystal plane. The method further includes treating the second epi material, wherein treating the second epi material comprises causing the second upper surface to transform to a second crystal plane different from the first crystal plane.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: February 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lilly Su, Chii-Horng Li, Ming-Hua Yu, Pang-Yen Tsai, Tze-Liang Lee, Yen-Ru Lee