Patents by Inventor Ming-Hua Yu

Ming-Hua Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200402862
    Abstract: An embodiment is a device including a first fin extending from a substrate, a first gate stack over and along sidewalls of the first fin, a first gate spacer disposed along a sidewall of the first gate stack, and a first epitaxial source/drain region in the first fin and adjacent the first gate spacer. The first epitaxial source/drain region including a first epitaxial layer on the first fin, the first epitaxial layer including silicon and carbon, a second epitaxial layer on the first epitaxial layer, the second epitaxial layer having a different material composition than the first epitaxial layer, the first epitaxial layer separating the second epitaxial layer from the first fin, and a third epitaxial layer on the second epitaxial layer, the third epitaxial layer having a different material composition than the first epitaxial layer.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventors: Yi-Jing Lee, Tsung-Hsi Yang, Ming-Hua Yu
  • Patent number: 10861975
    Abstract: A method of forming a FinFET with a rounded source/drain profile comprises forming a fin in a substrate, etching a source/drain recess in the fin, forming a plurality of source/drain layers in the source/drain recess; and etching at least one of the plurality of source/drain layers. The source/drain layers may be a silicon germanium compound. Etching at the source/drain layers may comprises partially etching each of the plurality of source/drain layers prior to forming subsequent layers of the plurality of source/drain layers. The source/drain layers may be formed with a thickness at a top corner of about 15 nm, and the source/drain layers may each be etched back by about 3 nm prior to forming subsequent layers of the plurality of source/drain layers. Forming the plurality of source/drain layers optionally comprises forming at least five source/drain layers.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Chih-Pin Tsao, Pei-Ren Jeng, Tze-Liang Lee
  • Patent number: 10854748
    Abstract: A semiconductor device includes a first gate stack over a substrate. The semiconductor device further includes a first epitaxial (epi) material in the substrate on a first side of the first gate stack. The first epi material includes a first upper surface having a first crystal plane. The semiconductor device further includes a second epi material in the substrate on a second side of the first gate stack opposite the first side. The second epi material includes a second upper surface having a second crystal plane, and the first crystal plane is different from the second crystal plane.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lilly SU, Pang-Yen Tsai, Tze-Liang Lee, Chii-Horng Li, Yen-Ru Lee, Ming-Hua Yu
  • Patent number: 10847638
    Abstract: A method includes recessing a semiconductor fin to form a recess, wherein the semiconductor fin protrudes higher than isolation regions on opposite sides of the semiconductor fin, and performing a first epitaxy to grow a first epitaxy layer extending into the recess. The first epitaxy is performed using a first process gas comprising a silicon-containing gas, silane, and a phosphorous-containing gas. The first epitaxy layer has a first phosphorous atomic percentage. The method further includes performing a second epitaxy to grow a second epitaxy layer extending into the recess and over the first epitaxy layer. The second epitaxy is performed using a second process gas comprising the silicon-containing gas, silane, and the phosphorous-containing gas. The second epitaxy layer has a second phosphorous atomic percentage higher than the first phosphorous atomic percentage.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: November 24, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jing Lee, Ming-Hua Yu
  • Patent number: 10840355
    Abstract: A method includes recessing a semiconductor fin to form a recess, wherein the semiconductor fin protrudes higher than isolation regions on opposite sides of the semiconductor fin, and performing a first epitaxy to grow a first epitaxy layer extending into the recess. The first epitaxy is performed using a first process gas comprising a silicon-containing gas, silane, and a phosphorous-containing gas. The first epitaxy layer has a first phosphorous atomic percentage. The method further includes performing a second epitaxy to grow a second epitaxy layer extending into the recess and over the first epitaxy layer. The second epitaxy is performed using a second process gas comprising the silicon-containing gas, silane, and the phosphorous-containing gas. The second epitaxy layer has a second phosphorous atomic percentage higher than the first phosphorous atomic percentage.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jing Lee, Ming-Hua Yu
  • Publication number: 20200343250
    Abstract: A static random access memory (SRAM) cell includes a semiconductor fin, a first gate structure, a second gate structure, an epitaxy structure, and a first fin sidewall structure. The first gate structure crosses the semiconductor fin to form a pull-down (PD) transistor. The second gate structure crosses the semiconductor fin to form a pull-gate (PG) transistor. The epitaxy structure is on the semiconductor fin and between the first and second gate structures. The first fin sidewall structure is on a first side of the epitaxy structure and between the first and second gate structures. A method for manufacturing the semiconductor device is also disclosed.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing LEE, Tsz-Mei KWOK, Ming-Hua YU, Kun-Mu LI
  • Patent number: 10811537
    Abstract: A device includes a semiconductor substrate, an isolation structure, and an epitaxial fin portion. The semiconductor substrate has an implanted region. The implanted region has a bottom fin portion thereon, in which a depth of the implanted region is smaller than a thickness of the semiconductor substrate. The isolation structure surrounds the bottom fin portion. The epitaxial fin portion is disposed over a top surface of the bottom fin portion, in which the implanted region of the semiconductor substrate includes oxygen and has an oxygen concentration lower than about 1·E+19 atoms/cm3.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 20, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Yu Lin, Ming-Hua Yu, Tze-Liang Lee, Chan-Lon Yang
  • Patent number: 10797164
    Abstract: A FinFET and methods for forming a FinFET are disclosed. A method includes forming a semiconductor fin on a substrate, implanting the semiconductor fin with dopants, and forming a capping layer on a top surface and sidewalls of the semiconductor fin. The method further includes forming a dielectric on the capping layer, and forming a gate electrode on the dielectric.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Chih-Pin Tsao, Hou-Yu Chen
  • Patent number: 10784375
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Eric Peng, Chao-Cheng Chen, Chii-Horng Li, Ming-Hua Yu, Shih-Hao Lo, Syun-Ming Jang, Tze-Liang Lee, Ying Hao Hsieh
  • Patent number: 10770359
    Abstract: An embodiment is a device including a first fin extending from a substrate, a first gate stack over and along sidewalls of the first fin, a first gate spacer disposed along a sidewall of the first gate stack, and a first epitaxial source/drain region in the first fin and adjacent the first gate spacer. The first epitaxial source/drain region including a first epitaxial layer on the first fin, the first epitaxial layer including silicon and carbon, a second epitaxial layer on the first epitaxial layer, the second epitaxial layer having a different material composition than the first epitaxial layer, the first epitaxial layer separating the second epitaxial layer from the first fin, and a third epitaxial layer on the second epitaxial layer, the third epitaxial layer having a different material composition than the first epitaxial layer.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jing Lee, Tsung-Hsi Yang, Ming-Hua Yu
  • Publication number: 20200279920
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Tetsuji UENO, Ming-Hua YU, Chan-Lon YANG
  • Patent number: 10749029
    Abstract: A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Ming-Hua Yu, Chan-Lon Yang
  • Patent number: 10727229
    Abstract: A semiconductor device includes a substrate; an isolation structure over the substrate; and two fins in a first region of the semiconductor device extending from the substrate and through the isolation structure. Each of the two fins has a channel region and two source/drain (S/D) regions sandwiching the channel region. The semiconductor device further includes a gate stack over the isolation structure and engaging the channel regions of the two fins; and four S/D features over the S/D regions of the two fins. Each of the four S/D features includes a lower portion and an upper portion over the lower portion. Each of the lower portions of the four S/D features has a cross-sectional profile that is wider at its bottom than at its top. The upper portions of the four S/D features merge into two merged S/D features with one on each side of the gate stack.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Tsz-Mei Kwok, Ming-Hua Yu
  • Patent number: 10714487
    Abstract: A semiconductor device includes a transistor, an isolation structure, and a fin sidewall structure. The transistor includes a fin extending from a substrate and an epitaxy structure grown on the fin. The isolation structure is above the substrate. The fin sidewall structure is above the isolation structure and is on a sidewall of the epitaxy structure. A method for manufacturing the semiconductor device is also disclosed.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Tsz-Mei Kwok, Ming-Hua Yu, Kun-Mu Li
  • Publication number: 20200176560
    Abstract: A method includes forming isolations extending into a semiconductor substrate, recessing the isolation regions, wherein a semiconductor region between the isolation regions forms a semiconductor fin, forming a first dielectric layer on the isolation regions and the semiconductor fin, forming a second dielectric layer over the first dielectric layer, planarizing the second dielectric layer and the first dielectric layer, and recessing the first dielectric layer. A portion of the second dielectric layer protrudes higher than remaining portions of the first dielectric layer to form a protruding dielectric fin. A portion of the semiconductor fin protrudes higher than the remaining portions of the first dielectric layer to form a protruding semiconductor fin. A portion of the protruding semiconductor fin is recessed to form a recess, from which an epitaxy semiconductor region is grown. The epitaxy semiconductor region expands laterally to contact a sidewall of the protruding dielectric fin.
    Type: Application
    Filed: July 1, 2019
    Publication date: June 4, 2020
    Inventors: Jeng-Wei Yu, Tsz-Mei Kwok, Tsung-Hsi Yang, Li-Wei Chou, Ming-Hua Yu
  • Publication number: 20200161185
    Abstract: A semiconductor device and method of forming the same is disclosed. The semiconductor device includes a semiconductor substrate, a first fin and a second fin extending from the semiconductor substrate, a first lower semiconductor feature directly over the first fin, and a second lower semiconductor feature directly over the second fin. Each of the first and second lower semiconductor features includes a top surface bending downward towards the semiconductor substrate. The semiconductor also further includes an upper semiconductor feature directly over and in physical contact with the first and second lower semiconductor features. The semiconductor device further includes a dielectric layer on sidewalls of the first and second lower semiconductor features.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Yi-Jing Lee, Jeng-Wei Yu, Li-Wei Chou, Tsz-Mei Kwok, Ming-Hua Yu
  • Patent number: 10658468
    Abstract: A method and structure for providing a two-step defect reduction bake, followed by a high-temperature epitaxial layer growth. In various embodiments, a semiconductor wafer is loaded into a processing chamber. While the semiconductor wafer is loaded within the processing chamber, a first pre-epitaxial layer deposition baking process is performed at a first pressure and first temperature. In some cases, after the first pre-epitaxial layer deposition baking process, a second pre-epitaxial layer deposition baking process is then performed at a second pressure and second temperature. In some embodiments, the second pressure is different than the first pressure. By way of example, after the second pre-epitaxial layer deposition baking process and while at a growth temperature, a precursor gas may then be introduced into the processing chamber to deposit an epitaxial layer over the semiconductor wafer.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tetsuji Ueno, Ming-Hua Yu, Chan-Lon Yang
  • Publication number: 20200135861
    Abstract: A method of forming a semiconductor device includes depositing a p-type semiconductor layer over a portion of a semiconductor substrate, depositing a semiconductor layer over the p-type semiconductor layer, wherein the semiconductor layer is free from p-type impurities, forming a gate stack directly over a first portion of the semiconductor layer, and etching a second portion of the semiconductor layer to form a trench extending into the semiconductor layer. At least a surface of the p-type semiconductor layer is exposed to the trench. A source/drain region is formed in the trench. The source/drain region is of n-type.
    Type: Application
    Filed: August 16, 2019
    Publication date: April 30, 2020
    Inventors: Tsung-Hsi Yang, Ming-Hua Yu, Jeng-Wei Yu
  • Publication number: 20200135903
    Abstract: In a method for manufacturing a semiconductor device, an isolation insulating layer is formed over a fin structure. A first portion of the fin structure is exposed from and a second portion of the fin structure is embedded in the isolation insulating layer. A dielectric layer is formed over sidewalls of the first portion of the fin structure. The first portion of the fin structure and a part of the second portion of the fin structure in a source/drain region are removed, thereby forming a trench. A source/drain epitaxial structure is formed in the trench using one of a first process or a second process. The first process comprises an enhanced epitaxial growth process having an enhanced growth rate for a preferred crystallographic facet, and the second process comprises using a modified etch process to reduce a width of the source/drain epitaxial structure.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Yi-Jing LEE, Ming-Hua YU
  • Publication number: 20200119165
    Abstract: A method includes forming first spacers on opposing sidewalls of a first fin, where the first fin protrudes above a substrate, recessing the first fin to form a first recess between the first spacers, and treating the first spacers using a baking process, where treating the first spacers changes a profile of the first spacers. The method further includes epitaxially growing a first semiconductor material over a top surface of the first fin after treating the first spacers.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Yi-Jing Lee, Ming-Hua Yu