Patents by Inventor Ming-Ren Lin

Ming-Ren Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080054316
    Abstract: A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
    Type: Application
    Filed: October 29, 2007
    Publication date: March 6, 2008
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Qi Xiang, Niraj Subba, Witold Maszara, Zoran Krivokapic, Ming-Ren Lin
  • Patent number: 7329582
    Abstract: Methods are provided for fabricating a semiconductor device having an impurity doped region in a silicon substrate. The method comprises forming a metal silicide layer electrically contacting the impurity doped region and depositing a conductive layer overlying and electrically contacting the metal silicide layer. A dielectric layer is deposited overlying the conductive layer and an opening is etched through the dielectric layer to expose a portion of the conductive layer. A conductive material is selectively deposited to fill the opening and to electrically contact the impurity doped region.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: February 12, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James Pan, Jonathan Byron Smith, Ming-Ren Lin
  • Patent number: 7306997
    Abstract: A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: December 11, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Niraj Subba, Witold P. Maszara, Zoran Krivokapic, Ming-Ren Lin
  • Patent number: 7250645
    Abstract: A fin field effect transistor (FinFET) includes a reversed T-shaped fin. The FinFET further includes source and drain regions formed adjacent the reversed T-shaped fin. The FinFET further includes a dielectric layer formed adjacent surfaces of the fin and a gate formed adjacent the dielectric layer.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: July 31, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Haihong Wang, Shibly S. Ahmed, Ming-Ren Lin, Bin Yu
  • Patent number: 7238591
    Abstract: A method of forming a silicon-on-insulator substrate is disclosed, including providing a silicon substrate; depositing a first insulation layer over the silicon substrate; forming a conductive layer over the first insulation layer to a first structure; providing a second structure comprising a silicon device layer and a second insulation layer; bonding the first structure and the second structure together so that the conductive layer is located between the first and second insulation layers; and removing a portion of the silicon device layer thereby providing the silicon-on-insulator substrate having two discrete insulation layers. In one embodiment, the method further includes forming at least one conductive plug through the silicon substrate and the first insulation layer and/or the second insulation layer so as to contact the conductive layer. Methods of facilitating heat removal from the device layer are disclosed.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: July 3, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Ming-Ren Lin
  • Patent number: 7235436
    Abstract: A method for doping fin structures in FinFET devices includes forming a first glass layer on the fin structure of a first area and a second area. The method further includes removing the first glass layer from the second area, forming a second glass layer on the fin structure of the first area and the second area, and annealing the first area and the second area to dope the fin structures.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: June 26, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ming-Ren Lin, Zoran Krivokapic, Haihong Wang, Bin Yu
  • Publication number: 20070141791
    Abstract: A semiconductor device includes a substrate and an insulating layer on the substrate. The semiconductor device also includes a fin structure formed on the insulating layer, where the fin structure includes first and second side surfaces, a dielectric layer formed on the first and second side surfaces of the fin structure, a first gate electrode formed adjacent the dielectric layer on the first side surface of the fin structure, a second gate electrode formed adjacent the dielectric layer on the second side surface of the fin structure, and a doped structure formed on an upper surface of the fin structure in the channel region of the semiconductor device.
    Type: Application
    Filed: February 21, 2007
    Publication date: June 21, 2007
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Ming-Ren Lin, Bin Yu
  • Patent number: 7196374
    Abstract: A semiconductor device includes a substrate and an insulating layer on the substrate. The semiconductor device also includes a fin structure formed on the insulating layer, where the fin structure includes first and second side surfaces, a dielectric layer formed on the first and second side surfaces of the fin structure, a first gate electrode formed adjacent the dielectric layer on the first side surface of the fin structure, a second gate electrode formed adjacent the dielectric layer on the second side surface of the fin structure, and a doped structure formed on an upper surface of the fin structure in the channel region of the semiconductor device.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: March 27, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ming-Ren Lin, Bin Yu
  • Patent number: 7196372
    Abstract: A non-volatile memory device includes a substrate, an insulating layer, a fin, an oxide layer, spacers and one or more control gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The oxide layer is formed on the fin and acts as a tunnel oxide for the memory device. The spacers are formed adjacent the side surfaces of the fin and the control gates are formed adjacent the spacers. The spacers act as floating gate electrodes for the non-volatile memory device.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: March 27, 2007
    Assignee: Spansion LLC
    Inventors: Bin Yu, Ming-Ren Lin, Srikanteswara Dakshina-Murthy, Zoran Krivokapic
  • Publication number: 20060177998
    Abstract: A method may include forming a gate electrode over a fin structure, depositing a first metal layer on a top surface of the gate electrode, performing a first silicide process to convert a portion of the gate electrode into a metal-silicide compound, depositing a second metal layer on a top surface of the metal-silicide compound, and performing a second silicide process to form a fully-silicided gate electrode.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 10, 2006
    Inventors: Ming-Ren Lin, Witold Maszara, Haihong Wang, Bin Yu
  • Patent number: 7078278
    Abstract: A dual-metal CMOS arrangement and method of making the same provides a substrate and a plurality of NMOS devices and PMOS devices formed on the substrate. Each of the plurality of NMOS devices and PMOS devices have gate electrodes. Each NMOS gate electrode includes a first silicide region on the substrate and a first metal region on the first silicide region. The first silicide region of the NMOS gate electrode consists of a first silicide having a work function that is close to the conduction band of silicon. Each of the PMOS gate electrodes includes a second silicide region on the substrate and a second metal region on the second silicide region. The second silicide region of the PMOS gate electrode consists of a second silicide having a work function that is close to the valence band of silicon.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: July 18, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James Pan, Ming-Ren Lin
  • Patent number: 7064022
    Abstract: A method forms a semiconductor device from a device that includes a first source region, a first drain region, and a first fin structure that are separated from a second source region, a second drain region, and a second fin structure by an insulating layer. The method may include forming a dielectric layer over the device and removing portions of the dielectric layer to create covered portions and bare portions. The method may also include depositing a gate material over the covered portions and bare portions, doping the first fin structure, the first source region, and the first drain region with a first material, and doping the second fin structure, the second source region, and the second drain region with a second material. The method may further include removing a portion of the gate material over at least one covered portion to form the semiconductor device.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: June 20, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wiley Eugene Hill, Ming-Ren Lin, Bin Yu
  • Publication number: 20060099752
    Abstract: A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
    Type: Application
    Filed: November 10, 2004
    Publication date: May 11, 2006
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Qi Xiang, Niraj Subba, Witold Maszara, Zoran Krivokapic, Ming-Ren Lin
  • Patent number: 7001837
    Abstract: An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 21, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh V. Ngo, Paul R. Besser, Ming Ren Lin, Haihong Wang
  • Patent number: 6962857
    Abstract: A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in a strained silicon (SMOS) process. The liner for the trench is formed from a layer deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be an LPCVD. An annealing step can be utilized to form the liner.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: November 8, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh-Van Ngo, Ming-Ren Lin, Eric N. Paton, Haihong Wang, Qi Xiang, Jung-Suk Goo
  • Publication number: 20050245016
    Abstract: A dual-metal CMOS arrangement and method of making the same provides a substrate and a plurality of NMOS devices and PMOS devices formed on the substrate. Each of the plurality of NMOS devices and PMOS devices have gate electrodes. Each NMOS gate electrode includes a first silicide region on the substrate and a first metal region on the first silicide region. The first silicide region of the NMOS gate electrode consists of a first silicide having a work function that is close to the conduction band of silicon. Each of the PMOS gate electrodes includes a second silicide region on the substrate and a second metal region on the second silicide region. The second silicide region of the PMOS gate electrode consists of a second silicide having a work function that is close to the valence band of silicon.
    Type: Application
    Filed: April 28, 2004
    Publication date: November 3, 2005
    Inventors: James Pan, Ming-Ren Lin
  • Patent number: 6958264
    Abstract: A method of manufacturing a semiconductor device on a silicon-on-insulator wafer including a silicon active layer having at least two die pads formed thereon, the at least two die pads separated by at least one scribe lane, including the steps of forming at least one cavity through the silicon active layer in the at least one scribe lane; forming at least one gettering plug in each said cavity, each said gettering plug comprising doped fill material containing a plurality of gettering sites; and subjecting the wafer to conditions to getter at least one impurity into the plurality of gettering sites.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: October 25, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Ming-Ren Lin
  • Patent number: 6943087
    Abstract: Strained silicon is grown on a dielectric material in a trench in a silicon germanium layer at a channel region of a MOSFET after fabrication of other MOSFET elements using a removable dummy gate process to form an SOI MOSFET. The MOSFET is fabricated with the dummy gate in place, the dummy gate is removed, and a trench is formed in the channel region. Dielectric material is grown in the trench, and strained silicon is then grown from the silicon germanium trench sidewalls to form a strained silicon layer that extends across the dielectric material. The silicon germanium sidewalls impart strain to the strained silicon, and the presence of the dielectric material allows the strained silicon to be grown as a thin fully depleted layer. A replacement gate is then formed by damascene processing.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: September 13, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Jung-Suk Goo, James N. Pan, Ming Ren Lin
  • Patent number: 6924182
    Abstract: The formation of shallow trench isolations in a strained silicon MOSFET includes performing ion implantation in the strained silicon layer in the regions to be etched to form the trenches of the shallow trench isolations. The dosage of the implanted ions and the energy of implantation are chosen so as to damage the crystal lattice of the strained silicon throughout the thickness of the strained silicon layer in the shallow trench isolation regions to such a degree that the etch rate of the strained silicon in those regions is increased to approximately the same as or greater than the etch rate of the underlying undamaged silicon germanium. Subsequent etching yields trenches with significantly reduced or eliminated undercutting of the silicon germanium relative to the strained silicon. This in turn substantially prevents the formation of fully depleted silicon on insulator regions under the ends of the gate, thus improving the MOSFET leakage current.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: August 2, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Ming Ren Lin, Minh V. Ngo, Eric N. Paton, Haihong Wang
  • Patent number: 6905971
    Abstract: In one embodiment, the present invention relates to a method for pre-treating and etching a dielectric layer in a semiconductor device comprising the steps of: (A) pre-treating one or more exposed portions of a dielectric layer with a plasma in a plasma etching tool to increase removal rate of the one or more exposed portions upon etching; and (B) removing the one or more exposed portions of the dielectric layer in the same plasma etching tool of step (A) via plasma etching.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 14, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Cyrus Tabery, Chih-Yuh Yang, William G. En, Joong S. Jeon, Minh Van Ngo, Ming-Ren Lin