Patents by Inventor Mitsuru Nitta

Mitsuru Nitta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190233727
    Abstract: A phosphor comprises a crystal phase with a chemical composition (Lu1-p-q, Cep, Mq)x?y?zO. M denotes one or more elements selected from the group consisting of Y, La, Sc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. ? contains Si, which constitutes 90% or more by mole of ?. ? contains N, which constitutes 90% or more by mole of ?. The variables x, y, z, p, and q satisfy 5.5?x?6.5, 10.5?y?11.5, 19.5?z?20.5, 0<p<0.03, and 0?q?0.5.
    Type: Application
    Filed: November 14, 2018
    Publication date: August 1, 2019
    Inventors: MITSURU NITTA, NOBUAKI NAGAO, YASUHISA INADA
  • Publication number: 20190177614
    Abstract: A phosphor includes a crystal phase with a chemical composition (LuxY1-x)yM3-y-zCez?p?q. M denotes one or more elements selected from the group consisting of La, Sc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. ? contains Si, which constitutes 90% or more by mole of ?. ? contains N, which constitutes 90% or more by mole of ?. The variables x, y, z, p, and q satisfy 0<x?1, 1.5?y?3?z, 0<z?0.6, 5.5?p?6.5, and 10.5?q?11.5. The phosphor has an emission spectrum peak at a wavelength in the range of not less than 600 nm and not more than 680 nm.
    Type: Application
    Filed: October 24, 2018
    Publication date: June 13, 2019
    Inventors: NOBUAKI NAGAO, MITSURU NITTA
  • Publication number: 20190144296
    Abstract: A phosphor contains a crystal phase having a chemical composition CexM3-x-y?6?11-z. M is one or more elements selected from the group consisting of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. ? contains Si in an amount of 50 mol % or more of a total mol of ?. ? further contains Al. ? contains N in an amount of 80 mol % or more N of a total mol of ?. x satisfies 0<x?0.6. y satisfies 0?y?1.0. z satisfies 0?z?1.0.
    Type: Application
    Filed: January 10, 2019
    Publication date: May 16, 2019
    Inventors: Mitsuru NITTA, Yasuhisa INADA, Nobuaki NAGAO
  • Patent number: 10214429
    Abstract: A phosphor contains a crystal phase having a chemical composition CexM3-x-y?6?11-z. M is one or more elements selected from the group consisting of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. ? contains Si in an amount of 50 mol % or more of a total mol of ?. ?contains N in an amount of 80 mol % or more N of a total mol of ?. x satisfies 0<x?0.6. y satisfies 0?y?1.0. z satisfies 0?z?1.0. The phosphor shows a maximum peak of an emission spectrum in a wavelength range of 600 nm or more and 800 nm or less and a first peak of an excitation spectrum in a wavelength range of 500 nm or more and 600 nm or less.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 26, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Mitsuru Nitta, Yasuhisa Inada, Nobuaki Nagao
  • Patent number: 10182702
    Abstract: A light-emitting apparatus includes; a light-emitting device including a photoluminescent layer that receives excitation light and emits light including first light having a wavelength ?a in air, and a light-transmissive layer located on or near the photoluminescent layer; and an optical fiber that receives the light from the photoluminescent layer at one end of the optical fiber and emits the received light from the other end thereof. A surface structure is defined on at least one of the photoluminescent layer and the light-transmissive layer, and the surface structure has projections or recesses or both and limits a directional angle of the first light having the wavelength ?a in air.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: January 22, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Nobuaki Nagao, Taku Hirasawa, Yasuhisa Inada, Mitsuru Nitta, Akira Hashiya, Yasuhiko Adachi
  • Publication number: 20180346808
    Abstract: A phosphor comprises a crystal phase that has a chemical composition of (Y1-x-y,Cex,Lay)?Si?-zAlzN?O, where the ? satisfies 5.5???6.5, the ? satisfies 9.5???12.5, the ? satisfies 17.5???22.5, the x satisfies 0<x?0.1, the y satisfies 0?y?0.4, and the z satisfies 0?z?0.5. A light emission spectrum of the phosphor includes a peak within a wavelength range of not less than 600 nm and not more than 660 nm.
    Type: Application
    Filed: May 23, 2018
    Publication date: December 6, 2018
    Inventors: MITSURU NITTA, NOBUAKI NAGAO
  • Publication number: 20180217482
    Abstract: A projector includes a light source unit, a spatial light modulator configured to control light from the light source unit for each pixel to form an optical image, and a projection optical system configured to project the optical image formed by the spatial light modulator onto a target. The light source unit includes a solid-state light source and a wavelength convertor. The solid-state light source is configured to emit first light, the first light including blue light with a peak wavelength in a range of 430 to 470 nm, inclusive, and green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor contains a red phosphor including Ce as a luminescent center that is configured to emit second light upon receiving the green light. The second light has a spectrum with a peak wavelength of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
    Type: Application
    Filed: March 23, 2018
    Publication date: August 2, 2018
    Inventors: NOBUAKI NAGAO, MITSURU NITTA, YASUHISA INADA
  • Publication number: 20180216002
    Abstract: A fiber light source includes a solid-state light source, a wavelength convertor, and an optical fiber. The solid-state light source is configured to emit first light, the first light including blue light with a peak wavelength in a range of 430 to 470 nm, inclusive, and green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor is disposed on the light output side or the light incident side of the optical fiber and contains a red phosphor. The red phosphor includes Ce as a luminescent center, and is excited by at least part of the green light to emit second light. The second light has a spectrum with a peak wavelength in a range of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
    Type: Application
    Filed: March 23, 2018
    Publication date: August 2, 2018
    Inventors: NOBUAKI NAGAO, MITSURU NITTA, YASUHISA INADA
  • Publication number: 20180212112
    Abstract: A light-emitting apparatus includes: a solid-state light source; and a wavelength convertor. The solid-state light source emits first light including green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor contains a red phosphor including Ce as a luminescent center. The red phosphor is excited by at least part of the green light to emit second light. The second light has a spectrum with a peak wavelength in a range of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Inventors: MITSURU NITTA, NOBUAKI NAGAO, YASUHISA INADA
  • Patent number: 10031276
    Abstract: A display apparatus includes an excitation light source that outputs excitation light; a light-emitting device including a photoluminescent layer that receives the excitation light and emits light including first light having a wavelength ?a in air, and a light-transmissive layer located on or near the photoluminescent layer; and an optical shutter on an optical path of the light emitted from the photoluminescent layer. A surface structure is defined on at least one of the photoluminescent layer and the light-transmissive layer, and the surface structure has projections or recesses or both and limits a directional angle of the first light having the wavelength ?a in air.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 24, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Taku Hirasawa, Yasuhisa Inada, Akira Hashiya, Mitsuru Nitta, Takeyuki Yamaki
  • Patent number: 10012780
    Abstract: A light-emitting device includes a photoluminescent layer and a light-transmissive layer located on the photoluminescent layer. At least one of the photoluminescent layer and the light-transmissive layer has a submicron structure having at least projections or recesses arranged perpendicular to the thickness direction of the photoluminescent layer. At least one of the photoluminescent layer and the light-transmissive layer has a light emitting surface. The first light has a wavelength ?a in air. A distance Dint between adjacent projections or recesses and a refractive index nwav-a of the photoluminescent layer for the first light satisfy ?a/nwav-a<Dint<?a. A thickness of the photoluminescent layer, the refractive index nwav-a, and the distance Dint are set to limit a directional angle of the first light emitted from the light emitting surface.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: July 3, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yasuhisa Inada, Taku Hirasawa, Mitsuru Nitta, Akira Hashiya, Takeyuki Yamaki
  • Patent number: 9890912
    Abstract: A light-emitting apparatus includes a light-emitting device and an excitation light source. The light-emitting device includes a photoluminescent layer, a light-transmissive layer. At least one of the photoluminescent layer and the light-transmissive layer has a submicron structure having at least projections or recesses. Light emitted from the photoluminescent layer includes first light having a wavelength ?a in air. The distance Dint between adjacent projections or recesses and the refractive index nwav-a of the photoluminescent layer for the first light satisfy ?a/nwav-a<Dint<?a. A thickness of the photoluminescent layer, the refractive index nwav-a, and the distance Dint are set to limit a directional angle of the first light emitted from the light emitting surface. The excitation light source emits excitation light. The light-emitting device is integrally provided with the excitation light source.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: February 13, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Hashiya, Taku Hirasawa, Yasuhisa Inada, Yoshitaka Nakamura, Mitsuru Nitta, Takeyuki Yamaki
  • Publication number: 20180038575
    Abstract: The phosphor according to an aspect of the present disclosure contains a crystal phase having a chemical composition CexYyLa3-x-ySi6N11, where x and y satisfy 0<x?0.6, and (1.5?x)?y?(3?x). The phosphor has an emission spectral peak within a wavelength range of 600 nm or more and 660 nm or less and a first excitation spectral peak within a wavelength range of 480 nm or more and 550 nm or less.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 8, 2018
    Inventors: NOBUAKI NAGAO, MITSURU NITTA, YASUHISA INADA
  • Patent number: 9880336
    Abstract: A light-emitting device includes a photoluminescent layer, a light-transmissive layer located on the photoluminescent layer, and a multilayer mirror layered together with the photoluminescent layer and the light-transmissive layer. At least one of the photoluminescent layer and the light-transmissive layer has a submicron structure. The submicron structure has at least projections or recesses arranged perpendicular to the thickness direction of the photoluminescent layer. The photoluminescent layer emits light including first light having a wavelength ?a in air. The distance Dint between adjacent projections or recesses and the refractive index nwav-a of the photoluminescent layer for the first light satisfy ?a/nwav-a<Dint<?a. A thickness of the photoluminescent layer, the refractive index nwav-a, and the distance Dint are set to limit a directional angle of the first light emitted from the light emitting surface.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: January 30, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasuhisa Inada, Taku Hirasawa, Yoshitaka Nakamura, Akira Hashiya, Mitsuru Nitta, Takeyuki Yamaki
  • Publication number: 20180002188
    Abstract: A phosphor contains a crystal phase having a chemical composition CexM3-x-y?6?11-z. M is one or more elements selected from the group consisting of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. ? contains Si in an amount of 50 mol % or more of a total mol of ?. ?contains N in an amount of 80 mol % or more N of a total mol of ?. x satisfies 0<x?0.6. y satisfies 0?y?1.0. z satisfies 0?z?1.0. The phosphor shows a maximum peak of an emission spectrum in a wavelength range of 600 nm or more and 800 nm or less and a first peak of an excitation spectrum in a wavelength range of 500 nm or more and 600 nm or less.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: MITSURU NITTA, YASUHISA INADA, NOBUAKI NAGAO
  • Patent number: 9785039
    Abstract: A wavelength conversion member includes a substrate, a dichroic mirror layer, an SiO2 layer, a ZnO layer, and a phosphor layer, which are sequentially stacked from the substrate. The dichroic mirror layer reflects at least part of light incident from the above. The phosphor layer includes a plurality of phosphors and ZnO between the phosphors.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: October 10, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGMENT CO., LTD.
    Inventors: Atsushi Motoya, Kenta Watanabe, Ran Zheng, Sachiko Azuma, Yoshihisa Nagasaki, Takahiro Hamada, Mitsuru Nitta, Takashi Maniwa, Toshio Mori, Kazuhiro Matsuo
  • Patent number: 9651207
    Abstract: An oxychloride phosphor of the present disclosure includes divalent Eu arranged as an augmenting agent, at part of locations. The locations correspond to site of at least two kinds of predetermined substances included in a host crystal. A rate of the number of the divalent Eu with respect to the sum of the number of moles of the predetermined substance and the number of moles of the divalent Eu is less than 2%. When the predetermined substance is represented by A, the oxychloride phosphor is represented by a general formula of xAO.yEuO.SiO2.zCl. In this formula, A represents Sr and Ca, or Sr, Ca, and Mg, y indicates a value of not less than 0.002 and not more than 0.02, x+y indicates a value of more than 1.00 and not more than 1.30, and z indicates a value of not less than 0.20 and not more than 0.70.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 16, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kojiro Okuyama, Mitsuru Nitta, Osamu Inoue, Seigo Shiraishi
  • Patent number: 9644142
    Abstract: A red phosphor material includes an essential component represented by a formula of A2-2xRxEuySmzLnx-y-zM2O8 as a main component, where A represents at least one selected from Ca and Sr; R represents at least one selected from Li, Na, and K; Ln represents at least one selected from La, Gd, and Y; M represents at least one selected from W and Mo; and x, y, and z are numerical values that satisfy 0.2?x?0.7, 0.2?y+z?0.6, 0.005?z?0.04, and x?y?z?0. A light-emitting device includes an excitation light source and the red phosphor material that absorbs excitation light emitted by the excitation light source and emits red light.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: May 9, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Osamu Inoue, Kojiro Okuyama, Mitsuru Nitta, Seigo Shiraishi
  • Patent number: 9618697
    Abstract: A light-emitting device includes a photoluminescent layer that emits light containing first light, a light-transmissive layer located on or near the photoluminescent layer, a low-refractive-index layer and a high-refractive-index layer. A submicron structure is defined on the photoluminescent layer and/or the light-transmissive layer. The low-refractive-index layer is located on or near the photoluminescent layer so that the photoluminescent layer is located between the low-refractive-index layer and light-transmissive layer. The high-refractive-index layer is located on or near the low-refractive-index layer so that the low-refractive-index layer is located between the high-refractive-index layer and the photoluminescent layer.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: April 11, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasuhisa Inada, Taku Hirasawa, Yoshitaka Nakamura, Akira Hashiya, Mitsuru Nitta, Takeyuki Yamaki
  • Patent number: 9523034
    Abstract: A phosphor includes a host crystal including Sr3MgSi2O8 crystal and SrMgSiO4 crystal and also includes Eu2+, or Eu2+ and Mn2+ as luminescent centers. Alternatively, a phosphor includes a host crystal including Sr3MgSi2O8 crystal and SrMgSiO4 and also includes Eu2+ as a luminescent center, the phosphor being free from Mn2+ as a luminescent center. A light-emitting device includes a phosphor layer containing the phosphor. A projector and a vehicle include the light-emitting device.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 20, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kojiro Okuyama, Seigo Shiraishi, Mitsuru Nitta