Patents by Inventor Munaf Rahimo

Munaf Rahimo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110108953
    Abstract: A fast recovery diode includes an n-doped base layer having a cathode side and an anode side opposite the cathode side. A p-doped anode layer is arranged on the anode side. The anode layer has a doping profile and includes at least two sublayers. A first one of the sublayers has a first maximum doping concentration, which is between 2*1016 cm?3 and 2*1017 cm?3 and which is higher than the maximum doping concentration of any other sublayer. A last one of the sublayers has a last sublayer depth, which is larger than any other sublayer depth. The last sublayer depth is between 90 to 120 ?m. The doping profile of the anode layer declines such that a doping concentration in a range of 5*1014 cm?3 and 1*1015 cm?3 is reached between a first depth, which is at least 20 ?m, and a second depth, which is at maximum 50 ?m. Such a profile of the doping concentration is achieved by using aluminium diffused layers as the at least two sublayers.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 12, 2011
    Applicant: ABB Technology AG
    Inventors: Jan VOBECKY, Kati Hemmann, Hamit Duran, Munaf Rahimo
  • Publication number: 20100295093
    Abstract: A method for manufacturing a reverse-conducting semiconductor device (RC-IGBT) with a seventh layer formed as a gate electrode and a first electrical contact on a emitter side and a second electrical contact on a collector side, which is opposite the emitter side, a wafer of a first conductivity type with a first side and a second side opposite the first side is provided. For the manufacturing of the RC-IGBT on the collector side, a first layer of the first conductivity type or of a second conductivity type is created on the second side. A mask with an opening is created on the first layer and those parts of the first layer, on which the opening of the mask is arranged, are removed. The remaining parts of the first layer form a third layer. Afterwards, for the manufacturing of a second layer of a different conductivity type than the third layer, ions are implanted into the wafer on the second side into those parts of the wafer, on which the at least one opening is arranged.
    Type: Application
    Filed: June 21, 2010
    Publication date: November 25, 2010
    Applicant: ABB Technology AG
    Inventors: Munaf RAHIMO, Babak H-Alikhani
  • Publication number: 20100276727
    Abstract: A reverse-conducting semiconductor device is disclosed with an electrically active region, which includes a freewheeling diode and an insulated gate bipolar transistor on a common wafer. Part of the wafer forms a base layer with a base layer thickness. A first layer of a first conductivity type with at least one first region and a second layer of a second conductivity type with at least one second and third region are alternately arranged on the collector side. Each region has a region area with a region width surrounded by a region border. The RC-IGBT can be configured such that the following exemplary geometrical rules are fulfilled: each third region area is an area, in which any two first regions have a distance bigger (i.e.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 4, 2010
    Applicant: ABB Technology AG
    Inventors: Liutauras STORASTA, Munaf Rahimo, Christoph Von Arx, Arnost Kopta, Raffael Schnell
  • Publication number: 20100270587
    Abstract: A reverse-conducting semiconductor device (RC-IGBT) including a freewheeling diode and an insulated gate bipolar transistor (IGBT), and a method for making the RC-IGBT are provided. A wafer has first and second sides emitter and collector sides of the IGBT, respectively. At least one layer of a first or second conductivity type is created on the second side before at least one layer of a different conductivity type is created on the second side. The at least one layer of the first or second conductivity type and the at least one layer of the different conductivity type are arranged alternately in the finalized RC-IGBT. A second electrical contact, which is in direct electrical contact with the layers of the first or second and different conductivity types, is created on the second side. A shadow mask is applied on the second side, and the layer of the first or second conductivity type is created through the shadow mask.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 28, 2010
    Applicant: ABB TECHNOLOGY AG
    Inventors: Munaf RAHIMO, Wolfgang Janisch, Eustachio Faggiano
  • Publication number: 20100270585
    Abstract: A reverse-conducting insulated gate bipolar transistor includes a wafer of first conductivity type with a second layer of a second conductivity type and a third layer of the first conductivity type. A fifth electrically insulating layer partially covers these layers. An electrically conductive fourth layer is electrically insulated from the wafer by the fifth layer. The third through the fifth layers form a first opening above the second layer. A sixth layer of the second conductivity type and a seventh layer of the first conductivity type are arranged alternately in a plane on a second side of the wafer. A ninth layer is formed by implantation of ions through the first opening using the fourth and fifth layers as a first mask.
    Type: Application
    Filed: May 12, 2010
    Publication date: October 28, 2010
    Applicant: ABB Technology AG
    Inventors: Munaf RAHIMO, Jan Vobecky, Arnost Kopta
  • Patent number: 7816706
    Abstract: The power semiconductor device with a four-layer npnp structure can be turned-off via a gate electrode. The first base layer comprises a cathode base region adjacent to the cathode region and a gate base region adjacent to the gate electrode, but disposed at a distance from the cathode region. The gate base region has the same nominal doping density as the cathode base region in at least one first depth, the first depth being given as a perpendicular distance from the side of the cathode region, which is opposite the cathode metallization. The gate base region has a higher doping density than the cathode base region and/or the gate base region has a greater depth than the cathode base region in order to modulate the field in blocking state and to defocus generated holes from the cathode when driven into dynamic avalanche.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: October 19, 2010
    Assignee: ABB Technology AG
    Inventors: Munaf Rahimo, Peter Streit
  • Publication number: 20100248462
    Abstract: An exemplary method is disclosed for manufacturing a power semiconductor device which has a first electrical contact on a first main side and a second electrical contact on a second main side opposite the first main side and at least a two-layer structure with layers of different conductivity types, and includes providing an n-doped wafer and creating a surface layer of palladium particles on the first main side. The wafer is irradiated on the first main side with ions. Afterwards, the palladium particles are diffused into the wafer at a temperature of not more than 750° C., by which diffusion a first p-doped layer is created. Then, the first and second electrical contacts are created. At least the irradiation with ions is performed through a mask.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 30, 2010
    Applicant: ABB Technology AG
    Inventors: Jan VOBECKY, Munaf Rahimo
  • Publication number: 20100244093
    Abstract: A controlled-punch-through semiconductor device with a four-layer structure is disclosed which includes layers of different conductivity types, a collector on a collector side, and an emitter on an emitter side which lies opposite the collector side. The semiconductor device can be produced by a method performed in the following order: producing layers on the emitter side of wafer of a first conductivity type; thinning the wafer on a second side; applying particles of the first conductivity type to the wafer on the collector side for forming a first buffer layer having a first peak doping concentration in a first depth, which is higher than doping of the wafer; applying particles of a second conductivity type to the wafer on the second side for forming a collector layer on the collector side; and forming a collector metallization on the second side.
    Type: Application
    Filed: April 2, 2010
    Publication date: September 30, 2010
    Applicant: ABB Technology AG
    Inventors: Munaf Rahimo, Jan Vobecky, Wolfgang Janisch, Arnost Kopta, Frank Ritchie
  • Publication number: 20100151650
    Abstract: A method of manufacturing a power semiconductor device is provided. A first oxide layer is produced on a first main side of a substrate of a first conductivity type. A structured gate electrode layer with at least one opening is then formed on the first main side on top of the first oxide layer. A first dopant of the first conductivity type is implanted into the substrate on the first main side using the structured gate electrode layer as a mask, and the first dopant is diffused into the substrate. A second dopant of a second conductivity type is then implanted into the substrate on the first main side, and the second dopant is diffused into the substrate. After diffusing the first dopant into the substrate and before implanting the second dopant into the substrate, the first oxide layer is partially removed. The structured gate electrode layer can be used as a mask for implanting the second dopant.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Applicant: ABB Technology AG
    Inventors: Arnost Kopta, Munaf Rahimo
  • Patent number: 7446376
    Abstract: In an insulated gate bipolar transistor, an improved safe operating area capability is achieved according to the invention by a two-fold base region comprising a first base region (81), which is disposed in the channel region (7) so that it encompasses the one or more source regions (6), but does not adjoin the second main surface underneath the gate oxide layer (41), and a second base region (82) is disposed in the semiconductor substrate (2) underneath the base contact area (821) so that it partially overlaps with the channel region (7) and with the first base region (81).
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 4, 2008
    Assignee: ABB Technology AG
    Inventors: Munaf Rahimo, Stefan Linder
  • Publication number: 20080164490
    Abstract: The power semiconductor device with a four-layer npnp structure can be turned-off via a gate electrode. The first base layer comprises a cathode base region adjacent to the cathode region and a gate base region adjacent to the gate electrode, but disposed at a distance from the cathode region. The gate base region has the same nominal doping density as the cathode base region in at least one first depth, the first depth being given as a perpendicular distance from the side of the cathode region, which is opposite the cathode metallization. The gate base region has a higher doping density than the cathode base region and/or the gate base region has a greater depth than the cathode base region in order to modulate the field in blocking state and to defocus generated holes from the cathode when driven into dynamic avalanche.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 10, 2008
    Applicant: ABB Technology AG
    Inventors: Munaf Rahimo, Peter Streit
  • Publication number: 20080087947
    Abstract: An n-channel insulated gate semiconductor device with an active cell (5) comprising a p channel well region (6) surrounded by an n type third layer (8), the device further comprising additional well regions (11) formed adjacent to the channel well region (6) outside the active semiconductor cell (5) has enhanced safe operating are capability. The additional well regions (11) outside the active cell (5) do not affect the active cell design in terms of cell pitch, i.e. the design rules for cell spacing, and hole drainage between the cells, hence resulting in optimum carrier profile at the emitter side for low on-state losses.
    Type: Application
    Filed: November 2, 2007
    Publication date: April 17, 2008
    Applicant: ABB SCHWEIZ AG
    Inventor: Munaf Rahimo
  • Publication number: 20070281442
    Abstract: In order to produce a power semiconductor for operation at high blocking voltages, there is produced on a lightly doped layer having a doping of a first charge carrier type a medium-doped layer of the same charge carrier type. A highly doped layer is produced at that side of the medium-doped layer which is remote from the lightly doped layer, of which highly doped layer a part with high doping that remains in the finished semiconductor forms a second stop layer, wherein the doping of the highly doped layer is higher than the doping of the medium-doped layer. An electrode is subsequently indiffused into the highly doped layer. The part with low doping that remains in the finished semiconductor forms the drift layer and the remaining medium-doped part forms the first stop layer.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 6, 2007
    Applicant: ABB Technology AG
    Inventors: Munaf Rahimo, Arnost Kopta, Stefan Linder
  • Publication number: 20070158686
    Abstract: In an insulated gate bipolar transistor, an improved safe operating area capability is achieved according to the invention by a two-fold base region comprising a first base region (81), which is disposed in the channel region (7) so that it encompasses the one or more source regions (6), but does not adjoin the second main surface underneath the gate oxide layer (41), and a second base region (82) is disposed in the semiconductor substrate (2) underneath the base contact area (821) so that it partially overlaps with the channel region (7) and with the first base region (81).
    Type: Application
    Filed: November 16, 2004
    Publication date: July 12, 2007
    Applicant: ABB Technology AG
    Inventors: Munaf Rahimo, Stefan Linder
  • Patent number: 7224008
    Abstract: The invention relates to a manufacturing method for an insulated gate semiconductor device cell, comprising the steps of forming a cell window (3) in a layered structure that is located on top of a semiconductor substrate (1), forming at least one process mask that partially covers the cell window (3). In forming the cell window (3), at least one strip (41, 42) of the layered structure is left to remain inside the cell window (3) and at least one strip (41, 42) is used to serve as an edge for the at least one process mask (51, 52). The invention further relates to an insulated gate semiconductor device, comprising a semiconductor substrate (1) having an essentially planar top surface and an insulated gate formed on the top surface by a layered structure (2) that comprises at least one electrically insulating layer (22), wherein at least one strip (41, 42) of the layered structure (2) is disposed on a third area of the top surface between an edge of the insulated gate and a first main contact (6).
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: May 29, 2007
    Assignee: ABB Schweiz AG
    Inventors: Munaf Rahimo, Christoph Von Arx
  • Publication number: 20060022261
    Abstract: The invention relates to a manufacturing method for an insulated gate semiconductor device cell, comprising the steps of forming a cell window (3) in a layered structure that is located on top of a semiconductor substrate (1), forming at least one process mask that partially covers the cell window (3). In forming the cell window (3), at least one strip (41, 42) of the layered structure is left to remain inside the cell window (3) and at least one strip (41, 42) is used to serve as an edge for the at least one process mask (51, 52). The invention further relates to an insulated gate semiconductor device, comprising a semiconductor substrate (1) having an essentially planar top surface and an insulated gate formed on the top surface by a layered structure (2) that comprises at least one electrically insulating layer (22), wherein at least one strip (41, 42) of the layered structure (2) is disposed on a third area of the top surface between an edge of the insulated gate and a first main contact (6).
    Type: Application
    Filed: December 9, 2003
    Publication date: February 2, 2006
    Applicant: ABB SCHWEIZ AG
    Inventors: Munaf Rahimo, Christoph Von Arx