Patents by Inventor Naotaka Tanaka

Naotaka Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6727583
    Abstract: In a semiconductor device adapted to be mounted on a board and to be electrically connected to the board, comprising, at least two semiconductor electric chips, and a substrate on which the semiconductor electric chips are mounted and to which the semiconductor electric chips are electrically connected, in such a manner that the semiconductor electric chips are mounted on and electrically connected to the board through the substrate, according to the present invention, a thickness of each of the semiconductor electric chips in a direction in which the each of the semiconductor electric chips and the substrate are stacked is smaller than a thickness of the substrate in the direction.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: April 27, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Naka, Naotaka Tanaka, Ikuo Yoshida, Satoshi Imasu, Takahiro Naito
  • Patent number: 6710610
    Abstract: Electrode pads are formed on a tape circuit to correspond to positions of solder bumps on an IC. A plurality of pins formed on a periphery of the tape circuit provide electrical connection between the tape circuit and a mother socket. An elastomer sheet is provided between a portion of the tape circuit, on which the electrode pads are formed and the IC is mounted, and the mother socket, and a side surface of the sheet, which contacts with the tape circuit, is formed with cut grooves in lattice fashion such that respective centers of the electrode pads substantially coincide with intersections of the grooves.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: March 23, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Naotaka Tanaka, Hiroyuki Ohta, Ichiro Anjoh, Hideo Arima, Akio Hasebe, Kenichi Yamamoto
  • Publication number: 20030230809
    Abstract: A highly reliable semiconductor device provided herein can prevent a junction between a pad and a wire from coming off, and pads from peeling off an underlying insulating layer on the interface thereof. The semiconductor device has plugs formed in a region in which an electrode pad is formed over a substrate. The plugs protrude into the electrode pad.
    Type: Application
    Filed: January 9, 2003
    Publication date: December 18, 2003
    Applicants: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Takashi Nakajima, Naotaka Tanaka, Yasuyuki Nakajima, Ryo Haruta, Tomoo Matsuzawa, Masashi Sahara, Ken Okutani
  • Publication number: 20030231088
    Abstract: A high-frequency signal from a tape-shaped line section having a surface layer signal lead and surface layer GND lead disposed on both sides thereof is directly inputted to a semiconductor chip via a signal surface layer wiring of a package substrate and through solder bump electrodes. Alternatively, a high-frequency signal from the semiconductor chip is outputted to the outside via the tape-shaped line section in reverse. Owing to the transmission of the high-frequency signal by only a microstrip line at the whole surface layer of the package substrate, the high-frequency signal can be transmitted by only the microstrip line at the surface layer without through vias or the like. Accordingly, the high-frequency signal can be transmitted without a loss in frequency characteristic, and a high-quality high-frequency signal can be transmitted with a reduction in loss at high-frequency transmission.
    Type: Application
    Filed: February 26, 2003
    Publication date: December 18, 2003
    Inventors: Hiroshi Kikuchi, Norio Nakazato, Hideko Ando, Takashi Suga, Satoru Isomura, Takashi Kubo, Hiroyasu Sasaki, Masanori Fukuhara, Naotaka Tanaka, Fujiaki Nose
  • Publication number: 20030218238
    Abstract: A high-frequency signal from a tape-shaped line section having a surface layer signal lead and surface layer GND lead disposed on both sides thereof is directly inputted to a semiconductor chip via a signal surface layer wiring of a package substrate and through solder bump electrodes. Alternatively, a high-frequency signal from the semiconductor chip is outputted to the outside via the tape-shaped line section in reverse. Owing to the transmission of the high-frequency signal by only a microstrip line at the whole surface layer of the package substrate, the high-frequency signal can be transmitted by only the microstrip line at the surface layer without through vias or the like. Accordingly, the high-frequency signal can be transmitted without a loss in frequency characteristic, and a high-quality high-frequency signal can be transmitted with a reduction in loss at high-frequency transmission.
    Type: Application
    Filed: March 20, 2003
    Publication date: November 27, 2003
    Inventors: Hiroshi Kikuchi, Norio Nakazato, Hideko Ando, Takashi Suga, Satoru Isomura, Takashi Kubo, Hiroyasu Sasaki, Masanori Fukuhara, Naotaka Tanaka, Fujiaki Nose
  • Patent number: 6646350
    Abstract: In order to realize a semiconductor device and a manufacturing method thereof which can keep with a high reliability an electric connection between each of bump pads formed on LSI chips and each of electrode pads formed on an interconnection substrate, within an guaranteed temperature range, a thermal expansion coefficient of an adhesive (3) is in the range of 20 to 60 ppm, and an elastic modulus of a build-up portion (6) is in the range of 5 to 10 GPa. Further, the build-up portion (6) is constituted by a multi-layer build-up substrate in which buid-up portion a peak value (a glass transition temperature) of a loss coefficient exists within a range of 100° C. to 250° C. and does not exist within a range of 0° C. to 100° C.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: November 11, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Naotaka Tanaka, Hideo Miura, Yoshiyuki Kado, Ikuo Yoshida, Takahiro Naito
  • Patent number: 6465876
    Abstract: A semiconductor device which can improve the connection reliability of solder bumps and productivity in manufacturing. Insulating tape having wiring patterns on its surface is bond ed to a lead frame. Semiconductor elements are loaded and circuit formed surfaces and sides of the semiconductor elements are sealed with sealing resin. After arrangements of individual semiconductor devices are formed, the lead frame is separated into individual metal plates to form individual semiconductor devices. Such simultaneous production of a plurality of semiconductor devices enhances productivity, and improves flatness of the insulating tape, whereby the connection reliability of solder bumps is improved.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: October 15, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Akihiro Yaguchi, Naotaka Tanaka, Takeshi Terasaki, Ichiro Anjoh, Ryo Haruta, Asao Nishimura, Junichi Saeki
  • Publication number: 20020145204
    Abstract: In a multi-chip-module type semiconductor device, first and second semiconductor elements, a main component of each of the semiconductor elements being semiconductor material to form a semiconductor electric circuit in each of the semiconductor elements, are mounted on and electrically connected to a substrate adapted to be mounted onto a mother board and to be electrically connected to the mother board so that the each of the semiconductor elements is electrically connected to the mother board through the substrate.
    Type: Application
    Filed: April 5, 2002
    Publication date: October 10, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Yasuhiro Naka, Naotaka Tanaka, Ikuo Yoshida, Satoshi Imasu, Takahiro Naito
  • Publication number: 20020125565
    Abstract: In a semiconductor device adapted to be mounted on a board and to be electrically connected to the board, comprising, at least two semiconductor electric chips, and a substrate on which the semiconductor electric chips are mounted and to which the semiconductor electric chips are electrically connected, in such a manner that the semiconductor electric chips are mounted on and electrically connected to the board through the substrate, according to the present invention, a thickness of each of the semiconductor electric chips in a direction in which the each of the semiconductor electric chips and the substrate are stacked is smaller than a thickness of the substrate in the direction.
    Type: Application
    Filed: March 7, 2002
    Publication date: September 12, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Yasuhiro Naka, Naotaka Tanaka, Ikuo Yoshida, Satoshi Imasu, Takahiro Naito
  • Patent number: 6423571
    Abstract: A method of forming a semiconductor device having a multi-layered wiring structure that includes a conductor layer to be electrically connected to a packaging substrate, with the multi-layered wiring structure being provided on a circuit formation surface of a semiconductor chip. Ball-like terminals are formed, disposed in a grid array on the surface of the multi-layered wiring structure on the packaging substrate side. The multi-layered wiring structure is formed to include a buffer layer for relieving a thermal stress provided between the semiconductor chip and the packaging substrate, due to the packaging procedure. In the semiconductor device formed, the wiring distance is shorter than that of a conventional semiconductor device, so that an inductance component becomes smaller, to thereby increase signal speed.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: July 23, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Ogino, Akira Nagai, Shuji Eguchi, Toshiaki Ishii, Masanori Segawa, Haruo Akahoshi, Akio Takahashi, Takao Miwa, Naotaka Tanaka, Ichirou Anjou
  • Publication number: 20020072145
    Abstract: In order to realize a semiconductor device and a manufacturing method thereof which can keep with a high reliability an electric connection between each of bump pads formed on LSI chips and each of electrode pads formed on an interconnection substrate, within an guaranteed temperature range, a theremal expansion coefficient of an adhesive (3) is in the range of 20 to 60 ppm, and an elastic modulus of a build-up portion (6) is in the range of 5 to 10 GPa. Further, the build-up portion (6) is constituted by a multi-layer build-up substrate in which buid-up portion a peak value (a glass transition temperature) of a loss coefficient exists within a range of 100° C. to 250° C. and does not exist within a range of 0° C. to 100° C.
    Type: Application
    Filed: August 3, 2001
    Publication date: June 13, 2002
    Inventors: Naotaka Tanaka, Hideo Miura, Yoshiyuki Kado, Ikuo Yoshida, Takahiro Naito
  • Publication number: 20010051393
    Abstract: A method of forming a semiconductor device having a multi-layered wiring structure that includes a conductor layer to be electrically connected to a packaging substrate, with the multi-layered wiring structure being provided on a circuit formation surface of a semiconductor chip. Ball-like terminals are formed, disposed in a grid array on the surface of the multi-layered wiring structure on the packaging substrate side. The multi-layered wiring structure is formed to include a buffer layer for relieving a thermal stress provided between the semiconductor chip and the packaging substrate, due to the packaging procedure. In the semiconductor device formed, the wiring distance is shorter than that of a conventional semiconductor device, so that an inductance component becomes smaller, to thereby increase signal speed.
    Type: Application
    Filed: June 20, 2001
    Publication date: December 13, 2001
    Inventors: Masahiko Ogino, Akira Nagai, Shuji Eguchi, Toshiaki Ishii, Masanori Segawa, Haruo Akahoshi, Akio Takahashi, Takao Miwa, Naotaka Tanaka, Ichirou Anjou
  • Patent number: 6314819
    Abstract: A method for measuring an adhesion strength of a resin material which is capable of accurately and readily measuring a universal adhesion strength independent of dimensions and shapes of specimen. A delamination portion is partially formed between a resin and an adherend material. Loads in two different directions are applied to an adhering interface such that opposed shear stresses are generated. As a result, a true adhering strength can be obtained from an apparent delamination propagating strength in each case.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: November 13, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Asao Nishimura, Naotaka Tanaka, Isao Hirose
  • Patent number: 6297073
    Abstract: A semiconductor device, is provided will semiconductor chips having a plurality of electrodes for external connection, elastomer resin portions formed of an elastomer resin, which are bonded to the semiconductor chip excepting at least some of the plurality of electrodes, a tape layer of resin including tape wiring patterns on the surface thereof, a plurality of solder bumps for bonding the printed wiring pattern to the tape wiring patterns, leads for connecting the plurality of electrodes of the semiconductor chips to the tape wiring patterns, and seal resin for covering the leads and the plurality of electrodes which are connected by the leads. The elastomer resin has a modulus of transverse elasticity not less than 50 MPa and not more than 750 MPa.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: October 2, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Ryuji Kohno, Naotaka Tanaka, Akihiro Yaguchi, Tetsuo Kumazawa, Ichiro Anjoh, Hideki Tanaka, Asao Nishimura, Shuji Eguchi, Akira Nagai, Mamoru Mita
  • Patent number: 6232653
    Abstract: A TSOP type semiconductor device having a LOC structure employing a copper (alloy) type frame prevents resin cracks that occur in a reliability test such as a temperature cycle test. The TSOP type semiconductor device has narrower common inner leads where a resin crack would be likely to occur first, and has a thinner chip.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: May 15, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Naotaka Tanaka, Akihiro Yaguchi, Ryuji Kohno, Kiyomi Kojima, Takeshi Terasaki, Hideo Miura, Junichi Arita, Chikako Imura
  • Patent number: 6130112
    Abstract: A semiconductor device, is provided will semiconductor chips having a plurality of electrodes for external connection, elastomer resin portions formed of an elastomer resin, which are bonded to the semiconductor chip excepting at least some of the plurality of electrodes, a tape layer of resin including tape wiring patterns on the surface thereof, a plurality of solder bumps for bonding the printed wiring pattern to the tape wiring patterns, leads for connecting the plurality of electrodes of the semiconductor chips to the tape wiring patterns, and seal resin for covering the leads and the plurality of electrodes which are connected by the leads. The elastomer resin has a modulus of transverse elasticity not less than 50 MPa and not more than 750 MPa.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: October 10, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Ryuji Kohno, Naotaka Tanaka, Akihiro Yaguchi, Tetsuo Kumazawa, Ichiro Anjoh, Hideki Tanaka, Asao Nishimura, Shuji Eguchi, Akira Nagai, Mamoru Mita
  • Patent number: 6070473
    Abstract: A method for measuring an adhesion strength of a resin material which is capable of accurately and readily measuring a universal adhesion strength independent of dimensions and shapes of specimen. A delamination portion is partially formed between a resin and an adherend material. Loads in two different directions are applied to an adhering interface such that opposed shear stresses are generated. As a result, a true adhering strength can be obtained from an apparent delamination propagating strength in each case.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: June 6, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Asao Nishimura, Naotaka Tanaka, Isao Hirose
  • Patent number: 6049128
    Abstract: A semiconductor device, is provided will semiconductor chips having a plurality of electrodes for external connection, elastomer resin portions formed of an elastomer resin, which are bonded to the semiconductor chip excepting at least some of the plurality of electrodes, a tape layer of resin including tape wiring patterns on the surface thereof, a plurality of solder bumps for bonding the printed wiring pattern to the tape wiring patterns, leads for connecting the plurality of electrodes of the semiconductor chips to the tape wiring patterns, and seal resin for covering the leads and the plurality of electrodes which are connected by the leads. The elastomer resin has a modulus of transverse elasticity not less than 50 MPa and not more than 750 MPa.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: April 11, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Ryuji Kohno, Naotaka Tanaka, Akihiro Yaguchi, Tetsuo Kumazawa, Ichiro Anjoh, Hideki Tanaka, Asao Nishimura, Shuji Eguchi, Akira Nagai, Mamoru Mita
  • Patent number: 6028364
    Abstract: A semiconductor device has a multi-layered wiring structure having a conductor layer to be electrically connected to a packaging substrate, the structure being provided on a circuit formation surface of a semiconductor chip; and ball-like terminals disposed in a grid array on the surface of the multi-layered wiring structure on the packaging substrate side, wherein the multi-layered wiring structure includes a buffer layer for relieving a thermal stress produced between the semiconductor chip and the packaging substrate, after packaging thereof, and multiple wiring layers.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: February 22, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Ogino, Akira Nagai, Shuji Eguchi, Toshiaki Ishii, Masanori Segawa, Haruo Akahoshi, Akio Takahashi, Takao Miwa, Naotaka Tanaka, Ichirou Anjou
  • Patent number: 5895965
    Abstract: In order to provide a semiconductor device of high reliability which suppresses a degradation of the fatigue strength of solder connection portions and warping of a tape-type wiring substrate forming the cause of the inferior contact between solder bumps and an external substrate, and a method of manufacturing the semiconductor device, a frame-like member is disposed on the inner peripheral part of the tape-type wiring substrate so as to relax constraint on the thermal deformation of the tape-type semiconductor substrate.
    Type: Grant
    Filed: September 18, 1997
    Date of Patent: April 20, 1999
    Assignee: Hitachi, Ltd.
    Inventors: Naotaka Tanaka, Makoto Kitano, Akihiro Yaguchi, Ichiro Anjoh, Hideki Tanaka, Asao Nishimura