Patents by Inventor Naoyoshi Tamura

Naoyoshi Tamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8247283
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 21, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8232180
    Abstract: The active region of an NMOS transistor and the active region of a PMOS transistor are divided by an STI element isolation structure. The STI element isolation structure is made up of a first element isolation structure formed so as to include the interval between both active regions, and a second element isolation structure formed in the region other than the first element isolation structure.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: July 31, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Publication number: 20120171829
    Abstract: Recesses are formed in a pMOS region 2, and a SiGe layer is then formed so as to cover a bottom surface and a side surface of each of the recesses. Next, a SiGe layer containing Ge at a lower content than that in the SiGe layer is formed on each of the SiGe layers.
    Type: Application
    Filed: March 6, 2012
    Publication date: July 5, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Naoyoshi Tamura, Yosuke Shimamune, Hirotaka Maekawa
  • Publication number: 20120171834
    Abstract: A semiconductor device includes a MOS transistor, a source electrode and a drain electrode on the MOS transistor each include a first carbon doped silicon layer including carbon at a first carbon concentration and phosphorus at a first phosphorus concentration and a second carbon doped silicon layer over the first silicon carbide layer, which includes phosphorus at a second phosphorus concentration higher than the first phosphorus concentration, and which includes carbon at a second carbon concentration less than or equal to the first carbon concentration.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoyoshi TAMURA
  • Patent number: 8207042
    Abstract: A first p-type SiGe mixed crystal layer is formed by an epitaxial growth method in a trench, and a second p-type SiGe mixed crystal layer is formed. On the second SiGe mixed crystal layer, a third p-type SiGe mixed crystal layer is formed. The height of an uppermost surface of the first SiGe mixed crystal layer from the bottom of the trench is lower than the depth of the trench with the surface of the silicon substrate being the standard. The height of an uppermost surface of the second SiGe mixed crystal layer from the bottom of the trench is higher than the depth of the trench with the surface of the silicon substrate being the standard. Ge concentrations in the first and third SiGe mixed crystal layers are lower than a Ge concentration in the second SiGe mixed crystal layer.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: June 26, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yosuke Shimamune, Masahiro Fukuda, Young Suk Kim, Akira Katakami, Akiyoshi Hatada, Naoyoshi Tamura, Hiroyuki Ohta
  • Publication number: 20120135574
    Abstract: Aimed at providing a highly reliable semiconductor device appropriately increased in stress at the channel region so as to improve carrier injection rate, thereby dramatically improved in transistor characteristics, and made adaptable also to recent narrower channel width, and a method of manufacturing the same, and a method of manufacturing the same, a first sidewall composed of a stress film having expandability is formed on the side faces of a gate electrode, a second sidewall composed of a film having smaller stress is formed on the first sidewall, and a semiconductor, which is a SiC layer for example, is formed as being positioned apart from the first sidewall while placing the second sidewall in between.
    Type: Application
    Filed: February 6, 2012
    Publication date: May 31, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoyoshi TAMURA
  • Publication number: 20120121223
    Abstract: A hybrid connector is disclosed. The hybrid connector comprises a cable, a plug and a connector housing. The cable has an optical waveguide and conductive wires disposed therein. The plug is connected to the cable. The connector housing is configured to mount on the plug. The connector housing is provided with a connector-side locking portion, an optical connection portion and an electrical connection portion.
    Type: Application
    Filed: July 27, 2010
    Publication date: May 17, 2012
    Applicant: MOLEX INCORPORATED
    Inventors: Naoyoshi Tamura, Akihiro Shimotsu
  • Patent number: 8164085
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: April 24, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yosuke Shimamune, Hiroyuki Ohta, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 8158498
    Abstract: A p-channel MOS transistor includes a gate electrode formed on a silicon substrate in correspondence to a channel region therein via a gate insulation film, the gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, and source and drain regions of p-type are formed in the substrate at respective outer sides of the sidewall insulation films, wherein each of the source and drain regions encloses a polycrystal region of p-type accumulating therein a compressive stress.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 17, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 8134189
    Abstract: Aimed at providing a highly reliable semiconductor device appropriately increased in stress at the channel region so as to improve carrier injection rate, thereby dramatically improved in transistor characteristics, and made adaptable also to recent narrower channel width, and a method of manufacturing the same, and a method of manufacturing the same, a first sidewall composed of a stress film having expandability is formed on the side faces of a gate electrode, a second sidewall composed of a film having smaller stress is formed on the first sidewall, and a semiconductor, which is a SiC layer for example, is formed as being positioned apart from the first sidewall while placing the second sidewall in between.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 13, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Publication number: 20120045878
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 23, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoyoshi Tamura
  • Publication number: 20120040502
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoyoshi Tamura
  • Publication number: 20120009750
    Abstract: A first p-type SiGe mixed crystal layer is formed by an epitaxial growth method in a trench, and a second p-type SiGe mixed crystal layer is formed. On the second SiGe mixed crystal layer, a third p-type SiGe mixed crystal layer is formed. The height of an uppermost surface of the first SiGe mixed crystal layer from the bottom of the trench is lower than the depth of the trench with the surface of the silicon substrate being the standard. The height of an uppermost surface of the second SiGe mixed crystal layer from the bottom of the trench is higher than the depth of the trench with the surface of the silicon substrate being the standard. Ge concentrations in the first and third SiGe mixed crystal layers are lower than a Ge concentration in the second SiGe mixed crystal layer.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Yosuke Shimamune, Masahiro Fukuda, Young Suk Kim, Akira Katakami, Akiyoshi Hatada, Naoyoshi Tamura, Hiroyuki Ohta
  • Patent number: 8071435
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 6, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Publication number: 20110217847
    Abstract: A semiconductor device and manufacturing method thereof capable of improving an operating speed of a MOSFET using an inexpensive structure. The method comprises the steps of forming a stress film to cover a source, drain, sidewall insulating layer and gate of the MOSFET and forming in the stress film a slit extending from the stress film surface toward the sidewall insulating layer. As a result, an effect of allowing local stress components in the stress films on the source and the drain to be relaxed by local stress components in the stress film on the gate is suppressed by the slit.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoyoshi Tamura
  • Patent number: 7968414
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hiroyuki Ohta, Takashi Sakuma, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 7968920
    Abstract: A semiconductor device and manufacturing method thereof capable of improving an operating speed of a MOSFET using an inexpensive structure. The method comprises the steps of forming a stress film to cover a source, drain, sidewall insulating layer and gate of the MOSFET and forming in the stress film a slit extending from the stress film surface toward the sidewall insulating layer. As a result, an effect of allowing local stress components in the stress films on the source and the drain to be relaxed by local stress components in the stress film on the gate is suppressed by the slit.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Publication number: 20110049533
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Application
    Filed: November 1, 2010
    Publication date: March 3, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Yosuke Shimamune, Hiroyuki Ohta, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Publication number: 20110027965
    Abstract: The active region of an NMOS transistor and the active region of a PMOS transistor are divided by an STI element isolation structure. The STI element isolation structure is made up of a first element isolation structure formed so as to include the interval between both active regions, and a second element isolation structure formed in the region other than the first element isolation structure.
    Type: Application
    Filed: September 20, 2010
    Publication date: February 3, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoyoshi Tamura
  • Patent number: 7875521
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 25, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yosuke Shimamune, Hiroyuki Ohta, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura