Patents by Inventor Naoyoshi Tamura

Naoyoshi Tamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7518188
    Abstract: A p-channel MOS transistor includes a gate electrode formed on a silicon substrate in correspondence to a channel region therein via a gate insulation film, the gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, and source and drain regions of p-type are formed in the substrate at respective outer sides of the sidewall insulation films, wherein each of the source and drain regions encloses a polycrystal region of p-type accumulating therein a compressive stress.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: April 14, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Publication number: 20090090941
    Abstract: Aimed at providing a highly reliable semiconductor device appropriately increased in stress at the channel region so as to improve carrier injection rate, thereby dramatically improved in transistor characteristics, and made adaptable also to recent narrower channel width, and a method of manufacturing the same, and a method of manufacturing the same, a first sidewall composed of a stress film having expandability is formed on the side faces of a gate electrode, a second sidewall composed of a film having smaller stress is formed on the first sidewall, and a semiconductor, which is a SiC layer for example, is formed as being positioned apart from the first sidewall while placing the second sidewall in between.
    Type: Application
    Filed: July 31, 2008
    Publication date: April 9, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Naoyoshi Tamura
  • Patent number: 7476941
    Abstract: A semiconductor integrated circuit includes an n-channel MOS transistor and a p-channel MOS transistor formed respectively in first and second device regions of a substrate, the n-channel MOS transistor including a first gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, the p-channel MOS transistor including a second gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, wherein there is provided a stressor film on the substrate over the first and second device regions such that the stressor film covers the first gate electrode including the sidewall insulation films thereof and the second gate electrode including the sidewall insulation films thereof, wherein the stressor film has a decreased film thickness in the second device region at least in the vicinity of a base part of the second gate electrode.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: January 13, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 7432180
    Abstract: A method of fabricating a semiconductor device comprises the step of forming a nickel monosilicide layer selectively over a silicon region defined by an insulation film by a self-aligned process. The self-aligned process comprises the steps of forming a metallic nickel film on a silicon substrate on which the insulation film and the silicon region are formed, such that the metallic nickel film covers the insulation film and the silicon region, forming a first nickel silicide layer primarily of a Ni2Si phase on a surface of the silicon region of the metallic nickel film by applying an annealing process to the silicon substrate, removing the metallic nickel film, after the step of forming the first nickel silicide layer, by a selective wet etching process, and converting the first nickel silicide layer to a second nickel silicide layer primarily of a NiSi phase by a thermal annealing process conducted in a silane gas.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 7, 2008
    Assignee: Fujitsu Limited
    Inventors: Yasunori Uchino, Kazuo Kawamura, Naoyoshi Tamura
  • Patent number: 7429525
    Abstract: A method of fabricating a semiconductor device includes the steps of forming a metallic nickel film on a silicon substrate such that the metallic nickel film covers an insulation film on the silicon substrate and a silicon surface of the silicon substrate, annealing the silicon substrate in a silane gas ambient at a temperature not exceeding 220° C. to form a first nickel silicide layer having a composition primarily of Ni2Si on the silicon surface and a surface of the metallic nickel film, removing the metallic nickel film after the step of forming the nickel silicide layer by a wet etching process, and converting the first nickel silicide layer to a second nickel silicide layer primarily of nickel monosilicide (NiSi) by applying a thermal annealing process.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: September 30, 2008
    Assignee: Fujitsu Limited
    Inventors: Yasunori Uchino, Kazuo Kawamura, Naoyoshi Tamura
  • Publication number: 20080122007
    Abstract: A semiconductor device includes a first polycrystalline semiconductor gate electrode structure formed in a first device region of a substrate via a gate insulation film and having a stacked structure in which a lower polycrystalline semiconductor layer and an upper polycrystalline semiconductor layer are stacked consecutively, the first polycrystalline gate electrode structure being doped to the second conductivity type, a second polycrystalline semiconductor gate electrode structure formed in a second device region of the substrate via a gate insulation film and having a stacked structure in which a lower polycrystalline semiconductor layer and an upper polycrystalline semiconductor layer are stacked consecutively, the second polycrystalline gate electrode structure being doped to the first conductivity type, a pair of diffusion regions of the second conductivity type formed in the first device region at respective lateral sides of the first polycrystalline semiconductor gate electrode structure, and a pair
    Type: Application
    Filed: June 19, 2007
    Publication date: May 29, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Shinichi Kawai, Takashi Saiki, Naoyoshi Tamura
  • Patent number: 7378305
    Abstract: A semiconductor integrated circuit device includes an n-channel MOS transistor formed on a first device region of a silicon substrate and a p-channel MOS transistor formed on a second device region of the silicon substrate, wherein the n-channel MOS transistor includes a first gate electrode carrying a pair of first sidewall insulation films formed on respective sidewall surfaces thereof, the p-channel MOS transistor includes a second gate electrode carrying a pair of second sidewall insulation films formed on respective sidewall surfaces thereof, first and second SiGe mixed crystal regions being formed in the second device region epitaxially so as to fill first and second trenches formed at respective, outer sides of the second sidewall insulation films so as to be included in source and drain diffusions of the p-channel MOS transistor, a distance between n-type source and drain diffusion region in the first device region being larger than a distance between the p-type source and drain diffusion regions in t
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: May 27, 2008
    Assignee: Fujitsu Limited
    Inventors: Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura, Yosuke Shimamune, Masashi Shima, Hiroyuki Ohta
  • Patent number: 7361613
    Abstract: A gate insulating film made of silicon oxynitride is disposed on the partial surface area of a semiconductor substrate. A gate electrode is disposed on the gate insulating film. Source and drain regions are disposed on both sides of the gate electrode. An existence ratio of subject nitrogen atoms to a total number of nitrogen atoms in the gate insulating film is 20% or smaller, wherein three bonds of each subject nitrogen atom are all coupled to silicon atoms and remaining three bonds of each of three silicon atoms connected to the subject nitrogen atom are all coupled to other nitrogen atoms.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: April 22, 2008
    Assignee: Fujitsu Limited
    Inventors: Mitsuaki Hori, Naoyoshi Tamura, Mayumi Shigeno
  • Publication number: 20080087923
    Abstract: A semiconductor device and manufacturing method thereof capable of improving an operating speed of a MOSFET using an inexpensive structure. The method comprises the steps of forming a stress film to cover a source, drain, sidewall insulating layer and gate of the MOSFET and forming in the stress film a slit extending from the stress film surface toward the sidewall insulating layer. As a result, an effect of allowing local stress components in the stress films on the source and the drain to be relaxed by local stress components in the stress film on the gate is suppressed by the slit.
    Type: Application
    Filed: January 11, 2007
    Publication date: April 17, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Naoyoshi Tamura
  • Publication number: 20080023773
    Abstract: A first p-type SiGe mixed crystal layer is formed by an epitaxial growth method in a trench, and a second p-type SiGe mixed crystal layer is formed. On the second SiGe mixed crystal layer, a third p-type SiGe mixed crystal layer is formed. The height of an uppermost surface of the first SiGe mixed crystal layer from the bottom of the trench is lower than the depth of the trench with the surface of the silicon substrate being the standard. The height of an uppermost surface of the second SiGe mixed crystal layer from the bottom of the trench is higher than the depth of the trench with the surface of the silicon substrate being the standard. Ge concentrations in the first and third SiGe mixed crystal layers are lower than a Ge concentration in the second SiGe mixed crystal layer.
    Type: Application
    Filed: November 28, 2006
    Publication date: January 31, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Yosuke Shimamune, Masahiro Fukuda, Young Suk Kim, Akira Katakami, Akiyoshi Hatada, Naoyoshi Tamura, Hiroyuki Ohta
  • Patent number: 7262465
    Abstract: A p-channel MOS transistor includes a strained SOI substrate formed of a SiGe mixed crystal layer and a strained Si layer formed on the SiGe mixed crystal layer via an insulation film, a channel region being formed in the strained Si layer, a gate electrode formed on the strained Si layer in correspondence to the channel region via a gate insulation film, and first and second p-type diffusion regions formed in the strained Si layer at respective first and second sides of the channel region, wherein the strained Si layer has first and second sidewall surfaces respectively at the first and second sides thereof, a first SiGe mixed crystal region being formed epitaxially to the SiGe mixed crystal layer in contact with the first sidewall surface, a second SiGe mixed crystal region being formed epitaxially to the SiGe mixed crystal layer in contact with the second sidewall surface, the first and second SiGe mixed crystal regions being in lattice matching with the strained silicon layer respectively at the first and
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: August 28, 2007
    Assignee: Fujitsu Limited
    Inventors: Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura, Yosuke Shimamune, Masashi Shima
  • Publication number: 20070166975
    Abstract: A method of fabricating a semiconductor device includes the steps of forming a metallic nickel film on a silicon substrate such that the metallic nickel film covers an insulation film on the silicon substrate and a silicon surface of the silicon substrate, annealing the silicon substrate in a silane gas ambient at a temperature not exceeding 220° C. to form a first nickel silicide layer having a composition primarily of Ni2Si on the silicon surface and a surface of the metallic nickel film, removing the metallic nickel film after the step of forming the nickel silicide layer by a wet etching process, and converting the first nickel silicide layer to a second nickel silicide layer primarily of nickel monosilicide (NiSi) by applying a thermal annealing process.
    Type: Application
    Filed: May 16, 2006
    Publication date: July 19, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Yasunori Uchino, Kazuo Kawamura, Naoyoshi Tamura
  • Publication number: 20070166974
    Abstract: A method of fabricating a semiconductor device comprises the step of forming a nickel monosilicide layer selectively over a silicon region defined by an insulation film by a self-aligned process. The self-aligned process comprises the steps of forming a metallic nickel film on a silicon substrate on which the insulation film and the silicon region are formed, such that the metallic nickel film covers the insulation film and the silicon region, forming a first nickel silicide layer primarily of a Ni2Si phase on a surface of the silicon region of the metallic nickel film by applying an annealing process to the silicon substrate, removing the metallic nickel film, after the step of forming the first nickel silicide layer, by a selective wet etching process, and converting the first nickel silicide layer to a second nickel silicide layer primarily of a NiSi phase by a thermal annealing process conducted in a silane gas.
    Type: Application
    Filed: May 16, 2006
    Publication date: July 19, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Yasunori Uchino, Kazuo Kawamura, Naoyoshi Tamura
  • Publication number: 20070148835
    Abstract: A semiconductor integrated circuit includes an n-channel MOS transistor and a p-channel MOS transistor formed respectively in first and second device regions of a substrate, the n-channel MOS transistor including a first gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, the p-channel MOS transistor including a second gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, wherein there is provided a stressor film on the substrate over the first and second device regions such that the stressor film covers the first gate electrode including the sidewall insulation films thereof and the second gate electrode including the sidewall insulation films thereof, wherein the stressor film has a decreased film thickness in the second device region at least in the vicinity of a base part of the second gate electrode.
    Type: Application
    Filed: March 1, 2007
    Publication date: June 28, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Publication number: 20070126036
    Abstract: A semiconductor device is configured so that there is formed a stressor film 4 covering the first field effect transistor and the second field effect transistor, formed with openings from which the originating area and the terminating area of each of the first field effect transistor and the second field effect transistor are partially exposed, and applying a stress to at least an area extending from the vicinity of the originating area to the vicinity of the terminating area of each of the first field effect transistor and the second field effect transistor, and that a height of a first gate electrode 3 (3A) in a direction substantially perpendicular to a first insulating layer is set different from a height of a second electrode 3 (3B) in the direction substantially perpendicular to a second insulating layer.
    Type: Application
    Filed: March 31, 2006
    Publication date: June 7, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Hiroyuki Ohta, Akiyoshi Hatada, Yosuke Shimamune, Akira Katakami, Naoyoshi Tamura
  • Patent number: 7202120
    Abstract: A semiconductor integrated circuit includes an n-channel MOS transistor and a p-channel MOS transistor formed respectively in first and second device regions of a substrate, the n-channel MOS transistor including a first gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, the p-channel MOS transistor including a second gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, wherein there is provided a stressor film on the substrate over the first and second device regions such that the stressor film covers the first gate electrode including the sidewall insulation films thereof and the second gate electrode including the sidewall insulation films thereof, wherein the stressor film has a decreased film thickness in the second device region at least in the vicinity of a base part of the second gate electrode.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: April 10, 2007
    Assignee: Fujitsu Limited
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Publication number: 20070012913
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Application
    Filed: June 21, 2006
    Publication date: January 18, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Hiroyuki Ohta, Takashi Sakuma, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Publication number: 20060289856
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Application
    Filed: September 20, 2005
    Publication date: December 28, 2006
    Applicant: FUJITSU LIMITED
    Inventors: Yosuke Shimamune, Hiroyuki Ohta, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Publication number: 20060252280
    Abstract: A gate insulating film made of silicon oxynitride is disposed on the partial surface area of a semiconductor substrate. A gate electrode is disposed on the gate insulating film. Source and drain regions are disposed on both sides of the gate electrode. An existence ratio of subject nitrogen atoms to a total number of nitrogen atoms in the gate insulating film is 20% or smaller, wherein three bonds of each subject nitrogen atom are all coupled to silicon atoms and remaining three bonds of each of three silicon atoms connected to the subject nitrogen atom are all coupled to other nitrogen atoms.
    Type: Application
    Filed: July 6, 2006
    Publication date: November 9, 2006
    Applicant: FUJITSU LIMITED
    Inventors: Mitsuaki Hori, Naoyoshi Tamura, Mayumi Shigeno
  • Publication number: 20060220113
    Abstract: A p-channel MOS transistor includes source and drain regions of p-type formed in a silicon substrate at respective lateral sides of a gate electrode wherein each of the source and drain regions of p-type includes any of a metal film region and a metal compound film region as a compressive stress source accumulating therein a compressive stress.
    Type: Application
    Filed: July 25, 2005
    Publication date: October 5, 2006
    Applicant: FUJITSU LIMITED
    Inventors: Naoyoshi Tamura, Kazuo Kawamura, Akira Katakami