Patents by Inventor Nathaniel David

Nathaniel David has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10130628
    Abstract: This disclosure provides a technology for managing the sensation of pain in a subject in need thereof. Treatment methods according to this invention include administering to the subject a formulation that contains an effective amount of (4-[(4S,5R)-4,5-bis(4-chlorophenyl)-4,5-dihydro-2-[4-methoxy-2-(1-methylethoxy)phenyl]-1H-imidazol-1-yl]carbonyl]-2-piperazinone).
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: November 20, 2018
    Assignees: UNITY BIOTECHNOLOGY, INC., BUCK INSTITUTE FOR RESEARCH ON AGING, THE JOHNS HOPKINS UNIVERSITY, MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH
    Inventors: Nathaniel David, Albert Davalos, Remi-Martin Laberge, Judith Campisi, Marco Demaria, Alain Vasserot, Chaekyu Kim, Okhee Jeon, Jennifer Elisseeff, James L. Kirkland, Tamar Tchkonia, Yi Zhu
  • Publication number: 20180326150
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: July 6, 2018
    Publication date: November 15, 2018
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20180303828
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 25, 2018
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Darren J. Baker, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Jan M.A. van Deursen
  • Publication number: 20180256568
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Application
    Filed: April 11, 2018
    Publication date: September 13, 2018
    Inventors: Remi-Martin Laberge, Judith Campisi, Albert Davalos, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, Darren J. Baker, Bennett G. Childs, James L. Kirkland, Tamar Tchkonia, Jan M.A. van Deursen, Jennifer Elisseeff, Chaekyu Kim, Okhee Jeon, Allyson K. Palmer, Yi Zhu
  • Publication number: 20180250296
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 6, 2018
    Inventors: Remi-Martin Laberge, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Nathaniel David, Alain Philippe Vasserot, Darren J. Baker, Bennett G. Childs, Jan M.A. van Deursen
  • Publication number: 20180242344
    Abstract: A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus may be configured to determine a scheduling metric for each respective station of a plurality of stations. The scheduling metric for each station may be based on an effective spatial-time-frequency physical layer (PHY) capability for the station and a consumption rate of spatial-time-frequency resources by the respective station. The effective spatial-time-frequency PHY capability for the station may be a product of a target percentage of spatial-time resources allocated to the station, an effective number of spatial streams supported by the respective station, and a maximum bandwidth. The consumption rate of spatial-time-frequency resources may be a transmit opportunity (TXOP) moving average of consumption rate by the station.
    Type: Application
    Filed: February 16, 2018
    Publication date: August 23, 2018
    Inventors: Xiaolong Huang, Madhan Jaganathan, Nathaniel David Houghton, Madhavan Nair, Srinivas Katar, Ahmed Ragab Elsherif
  • Publication number: 20180235957
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Darren J. Baker, Bennett G. Childs, Jan M.A. van Deursen
  • Publication number: 20180235956
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 23, 2018
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Darren J. Baker, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Jan M.A. van Deursen
  • Patent number: 10052073
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: August 21, 2018
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20180228242
    Abstract: An athletic shoe is selectively configurable between a weight-training configuration and a cross-training configuration. The athletic shoe includes an upper portion configured to receive a foot and a first sole portion connected to the upper portion. The first sole portion has an inner surface and an outer surface opposite the inner surface. The outer surface is configured to contact a training surface when the athletic shoe is in the cross-training configuration. The athletic shoe also includes a second sole portion removably connected to the first sole portion when the athletic shoe is in the weight-training configuration. The second sole portion includes a first surface and a second surface. The first surface is configured to contact the training surface and the second surface is configured to contact the outer surface when the athletic shoe is in the weight-training configuration.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventor: Nathaniel David Davenport
  • Publication number: 20180193458
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders. Also included herein are methods for extending lifespan.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 12, 2018
    Inventors: Jose Alberto Lopez-Dominguez, Remi-Martin Laberge, Judith Campisi, Albert Davalos, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, Darren J. Baker, Bennett G. Childs, James L. Kirkland, Tamar Tchkonia, Jan M.A. van Deursen, Yi Zhu
  • Publication number: 20180193359
    Abstract: Disclosed herein are compounds that are effective for treatment of various disease states associated with senescence. The disclosed compounds can be used to eliminate senescent cells for disease treatment. The dosing of the compounds includes both single administration and regimens of cycling dosages.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 12, 2018
    Inventor: Nathaniel David
  • Patent number: 10010546
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: July 3, 2018
    Assignees: Unity Biotechnology, Inc., Buck Institute for Research on Aging, Mayo Foundation for Medical Education and Research
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, James L. Kirkland, Tamar Tchkonia, Yi Zhu, Darren J. Baker, Bennett G. Childs, Jan M. A. van Deursen
  • Patent number: 9993472
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: June 12, 2018
    Assignees: UNITY BIOTECHNOLOGY, INC., BUCK INSTITUTE FOR RESEARCH ON AGING, THE JOHN HOPKINS UNIVERSITY, MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH
    Inventors: Remi-Martin Laberge, Judith Campisi, Albert Davalos, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, James L. Kirkland, Tamar Tchkonia, Jan M. A. van Deursen, Jennifer Elisseeff, Chaekyu Kim, Okhee Jeon, Yi Zhu
  • Patent number: 9980962
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 29, 2018
    Assignees: UNITY BIOTECHNOLOGY, INC, BUCK INSTITUTE FOR RESEARCH ON AGING, MAYO FOUNDATION FOR MEDICAL EDUCATIOIN AND RESEARCH
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Darren J. Baker, James L. Kirkland, Tamar Tchkonia, Jan M. A. van Deursen, Yi Zhu
  • Patent number: 9974903
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 22, 2018
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Scott M. Belliveau, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Naresh C. Bhavaraju, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable
  • Publication number: 20180126074
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: April 28, 2017
    Publication date: May 10, 2018
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20180117038
    Abstract: Methods are provided herein for selectively killing senescent cells and for treating senescence-associated diseases and disorders by administering a senolytic agent. Senescence-associated diseases and disorders treatable by the methods using the senolytic agents described herein include cardiovascular diseases and disorders associated with or caused by arteriosclerosis, such as atherosclerosis; idiopathic pulmonary fibrosis; chronic obstructive pulmonary disease; osteoarthritis; senescence-associated ophthalmic diseases and disorders; and senescence-associated dermatological diseases and disorders.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 3, 2018
    Inventors: Remi-Martin Laberge, Judith Campisi, Marco Demaria, Nathaniel David, Alain Philippe Vasserot, James L. Kirkland, Tamar Tchkonia, Yi Zhu
  • Publication number: 20180110787
    Abstract: A library of heterocyclic compounds has been screened to identify particular compounds that have high inhibitory capacity for the Bcl family of regulatory proteins. Compounds identified as Bcl antagonists have been further screened to select pharmaceutical agents with both high potency and high specificity for eliminating senescent cells in comparison with replicative or quiescent cells of the same tissue type. Particular structures are identified in this disclosure that eliminate senescent cells with an EC50 in the nanomole range and a specificity around or above 100-fold. In accordance with this invention, heterocyclic compounds provided in this disclosure can be formulated for the treatment of a range of age-related conditions caused or mediated by senescent cells. Such conditions are exemplified by ophthalmic conditions, pulmonary conditions, and osteoarthritis.
    Type: Application
    Filed: November 9, 2017
    Publication date: April 26, 2018
    Inventors: Remi-Martin Laberge, Nathaniel David
  • Publication number: 20180109298
    Abstract: The disclosure provides techniques for sounding sequence protection in multi-user multiple-input-multiple-output (MU-MIMO) communications for wireless local area networks (WLANs). An access point (AP) may select a station (STA) from multiple STAs in a MU-MIMO group. The AP may then transmit a request-to-send (RTS) frame, where the RTS is addressed to the selected STA. The AP may receive a clear-to-send (CTS) frame from the selected station and may perform, in response to receiving the CTS frame, a sounding sequence with the MU-MIMO group. After completion of the sounding sequence, the AP may transmit MU-MIMO data communications to at least one of the STAs in the MU-MIMO group.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 19, 2018
    Inventors: AHMED RAGAB ELSHERIF, NATHANIEL DAVID HOUGHTON