Patents by Inventor Nazila HARATIPOUR

Nazila HARATIPOUR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742407
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Ashish Verma Penumatcha, Sou-Chi Chang, Devin Merrill, I-Cheng Tung, Nazila Haratipour, Jack T. Kavalieros, Ian A. Young, Matthew V. Metz, Uygar E. Avci, Chia-Ching Lin, Owen Loh, Shriram Shivaraman, Eric Charles Mattson
  • Patent number: 11727260
    Abstract: An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Jack T. Kavalieros, Ian A. Young, Ram Krishnamurthy, Sasikanth Manipatruni, Uygar Avci, Gregory K. Chen, Amrita Mathuriya, Raghavan Kumar, Phil Knag, Huseyin Ekin Sumbul, Nazila Haratipour, Van H. Le
  • Patent number: 11721735
    Abstract: Thin film transistors having U-shaped features are described. In an example, integrated circuit structure including a gate electrode above a substrate, the gate electrode having a trench therein. A channel material layer is over the gate electrode and in the trench, the channel material layer conformal with the trench. A first source or drain contact is coupled to the channel material layer at a first end of the channel material layer outside of the trench. A second source or drain contact is coupled to the channel material layer at a second end of the channel material layer outside of the trench.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Aaron Lilak, Van H. Le, Abhishek A. Sharma, Tahir Ghani, Willy Rachmady, Rishabh Mehandru, Nazila Haratipour, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Shriram Shivaraman
  • Publication number: 20230197804
    Abstract: Contact over active gate (COAG) structures with trench contact layers, and methods of fabricating contact over active gate (COAG) structures using trench contact layers, are described. In an example, an integrated circuit structure includes a gate structure. An epitaxial source or drain structure is adjacent to the gate structure. A conductive trench contact structure is on the epitaxial source or drain structure. The conductive trench contact structure includes a first planar layer on the epitaxial source or drain structure, a second planar layer on the first planar layer, and a conductive fill material on the second planar layer.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Nazila HARATIPOUR, Gilbert DEWEY, I-Cheng TUNG, Nancy ZELICK, Chi-Hing CHOI, Jitendra Kumar JHA, Jack T. KAVALIEROS
  • Publication number: 20230197777
    Abstract: Techniques are provided herein to form gate-all-around (GAA) semiconductor devices utilizing a metal fill in an epi region of a stacked transistor configuration. In one example, an n-channel device and the p-channel device may both be GAA transistors each having any number of nanoribbons extending in the same direction where the n-channel device is located vertically above the p-channel device (or vice versa). Source or drain regions are adjacent to both ends of the n-channel device and the p-channel device. A metal fill may be provided around the source or drain region of the bottom semiconductor device to provide a high contact area between the highly conductive metal fill and the epitaxial material of that source or drain region. Metal fill may also be used around the top source or drain region to further improve conductivity throughout both of the stacked source or drain regions.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Cheng-Ying Huang, Nicole K. Thomas, Marko Radosavljevic, Patrick Morrow, Ashish Agrawal, Willy Rachmady, Nazila Haratipour, Seung Hoon Sung, I-Cheng Tung, Christopher M. Neumann, Koustav Ganguly, Subrina Rafique
  • Publication number: 20230197800
    Abstract: Techniques are provided herein to form semiconductor devices having a non-reactive metal contact in an epi region of a stacked transistor configuration. An n-channel device may be located vertically above a p-channel device (or vice versa). Source or drain regions are adjacent to both ends of the n-channel device and the p-channel device, such that a source or drain region of one device is located vertically over the source or drain region of the other device. A deep and narrow contact may be formed from either the frontside or the backside of the integrated circuit through the stacked source or drain regions. According to some embodiments, the contact is formed using a refractory metal or other non-reactive metal such that no silicide or germanide is formed with the epi material of the source or drain regions at the boundary between the contact and the source or drain regions.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Cheng-Ying Huang, Nicole K. Thomas, Marko Radosavljevic, Patrick Morrow, Ashish Agrawal, Willy Rachmady, Nazila Haratipour, Seung Hoon Sung
  • Publication number: 20230193473
    Abstract: The formation of titanium contacts to silicon germanium (SiGe) comprises the formation of a titanium silicide layer in which the silicon for the titanium silicide layer is provided by flowing silane (disilane, trisilane, etc.) over a titanium layer at an elevated temperature. The titanium silicide layer can help limit the amount of titanium and germanium interdiffusion that can occur across the titanium silicide-silicon germanium interface, which can reduce (or eliminate) the formation of voids in the SiGe layer during subsequent anneal and other high-temperature processes. The surface of the SiGe layer upon which the titanium layer is formed can also be preamorphized via boron and germanium implantation to further improve the robustness of the SiGe layer against microvoid development. The resulting titanium contacts are thermally stable in that their resistance remains substantially unchanged after being subjected to downstream annealing and high-temperature processing processes.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Debaleena Nandi, Gilbert Dewey, Tahir Ghani, Nazila Haratipour, Mauro J. Kobrinsky, Anand Murthy
  • Publication number: 20230187553
    Abstract: Described herein are integrated circuit devices with source and drain (S/D) contacts with barrier regions. The S/D contacts conduct current to and from semiconductor devices, e.g., to the source and drain regions of a transistor. The barrier regions are formed between the S/D region and an inner conductive structure and reduce the Schottky barrier height between the S/D region and the contact. The barrier regions may include one or more carbon layers and one or more metal layers. A metal layer may include niobium, tantalum, aluminum, or titanium.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 15, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Gilbert W. Dewey, Siddharth Chouksey, Nazila Haratipour, Jack T. Kavalieros, Matthew V. Metz, Scott B. Clendenning, Jason C. Retasket, Edward O. Johnson, JR.
  • Patent number: 11626475
    Abstract: An improved trench capacitor structure is disclosed that allows for the formation of narrower capacitors. An example capacitor structure includes a first conductive layer on the sidewalls of an opening through a thickness of a dielectric layer, a capacitor dielectric layer on the first conductive layer, a second conductive layer on the capacitor dielectric layer, and a conductive fill material on the second conductive layer. The capacitor dielectric layer laterally extends above the opening and along a top surface of the dielectric layer, and the conductive fill material fills a remaining portion of the opening.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Chia-Ching Lin, Sou-Chi Chang, Ian A. Young, Uygar E. Avci, Jack T. Kavalieros
  • Publication number: 20230097184
    Abstract: Embodiments of the present disclosure are directed to advanced integrated circuit structure fabrication and, in particular, integrated circuits with high dielectric constant (HiK) interfacial layering between an electrode and a ferroelectric (FE) or anti-ferroelectric (AFE) layer. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Sarah ATANASOV, Nazila HARATIPOUR, Sou-Chi CHANG, Shriram SHIVARAMAN, Uygar E. AVCI
  • Publication number: 20230097641
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, ferroelectric three-dimensional (3D) memory architectures. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Christopher M. NEUMANN, Nazila HARATIPOUR, Sou-Chi CHANG, Uygar E. AVCI, Shriram SHIVARAMAN
  • Publication number: 20230097736
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to ferroelectric random access memory (FRAM) devices with an enhanced capacitor architecture. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Nazila HARATIPOUR, Uygar E. AVCI, Jason PECK, Nafees A. KABIR, Sarah ATANASOV
  • Publication number: 20230101604
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional (3D) memory devices with transition metal dichalcogenide (TMD) channels. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Tanay GOSAVI, Shriram SHIVARAMAN, Carl H. NAYLOR, Chelsey DOROW, Ian A. YOUNG, Nazila HARATIPOUR, Kevin P. O'BRIEN
  • Publication number: 20230100860
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to memory devices utilizing dead-layer-free materials to reduce disturb effects. Other embodiments may be described or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Sou-Chi CHANG, Nazila HARATIPOUR, Shriram SHIVARAMAN, Uygar E. AVCI, Sarah ATANASOV, Christopher M. NEUMANN
  • Publication number: 20230101111
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional ferroelectric random access memory (3D FRAM) devices with a sense transistor coupled to a plurality of capacitors to (among other things) help improve signal levels and scaling. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Nazila HARATIPOUR, Uygar E. AVCI, Sarah ATANASOV, Jason PECK, Christopher M. NEUMANN
  • Publication number: 20230087399
    Abstract: Gate-all-around integrated circuit structures having confined epitaxial source or drain structures, are described. For example, an integrated circuit structure includes a plurality of nanowires above a sub-fin. A gate stack is over the plurality of nanowires and the sub-fin. Epitaxial source or drain structures are on opposite ends of the plurality of nanowires. The epitaxial source or drain structures comprise i) a first PMOS epitaxial (pEPI) region of germanium and boron, ii) a second pEPI region of silicon, germanium and boron on the first pEPI region at a contact location, iii) a capping layer comprising silicon over the second pEPI region. A conductive contact material comprising titanium is on the capping layer.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Debaleena NANDI, Cory BOMBERGER, Rushabh SHAH, Gilbert DEWEY, Nazila HARATIPOUR, Mauro J. KOBRINSKY, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20230090093
    Abstract: Thin film transistors having semiconductor structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is above the 2D material layer, the gate stack having a first side opposite a second side. A semiconductor structure including germanium is included, the semiconductor structure laterally adjacent to and in contact with the 2D material layer adjacent the first side of the gate stack. A first conductive structure is adjacent the first side of the second gate stack, the first conductive structure over and in direct electrical contact with the semiconductor structure. The semiconductor structure is intervening between the first conductive structure and the 2D material layer. A second conductive structure is adjacent the second side of the second gate stack, the second conductive structure over and in direct electrical contact with the 2D material layer.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Chelsey DOROW, Tanay GOSAVI, Chia-Ching LIN, Carl NAYLOR, Nazila HARATIPOUR, Kevin P. O'BRIEN, Seung Hoon SUNG, Ian A. YOUNG, Urusa ALAAN
  • Publication number: 20220416050
    Abstract: Embodiments disclosed herein include semiconductor devices with improved contact resistances. In an embodiment, a semiconductor device comprises a semiconductor channel, a gate stack over the semiconductor channel, a source region on a first end of the semiconductor channel, a drain region on a second end of the semiconductor channel, and contacts over the source region and the drain region. In an embodiment, the contacts comprise a silicon germanium layer, an interface layer over the silicon germanium layer, and a titanium layer over the interface layer.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Debaleena NANDI, Cory BOMBERGER, Gilbert DEWEY, Anand S. MURTHY, Mauro KOBRINSKY, Rushabh SHAH, Chi-Hing CHOI, Harold W. KENNEL, Omair SAADAT, Adedapo A. ONI, Nazila HARATIPOUR, Tahir GHANI
  • Publication number: 20220416032
    Abstract: Source and drain contacts that provide improved contact resistance and contact interface stability for transistors employing silicon and germanium source and drain materials, related transistor structures, integrated circuits, systems, and methods of fabrication are disclosed. Such source and drain contacts include a contact layer of co-deposited titanium and silicon on the silicon and germanium source and drain. The disclosed source and drain contacts improve transistor performance including switching speed and reliability.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Debaleena Nandi, Chi-Hing Choi, Gilbert Dewey, Harold Kennel, Omair Saadat, Jitendra Kumar Jha, Adedapo Oni, Nazila Haratipour, Anand Murthy, Tahir Ghani
  • Patent number: 11532439
    Abstract: Described is an ultra-dense ferroelectric memory. The memory is fabricated using a patterning method by that applies atomic layer deposition with selective dry and/or wet etch to increase memory density at a given via opening. A ferroelectric capacitor in one example comprises: a first structure (e.g., first electrode) comprising metal; a second structure (e.g., a second electrode) comprising metal; and a third structure comprising ferroelectric material, wherein the third structure is between and adjacent to the first and second structures, wherein a portion of the third structure is interdigitated with the first and second structures to increase surface area of the third structure. The increased surface area allows for higher memory density.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Nazila Haratipour, Seung Hoon Sung, Ashish Verma Penumatcha, Jack Kavalieros, Uygar E. Avci, Ian A. Young