Patents by Inventor Nazila HARATIPOUR

Nazila HARATIPOUR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210408018
    Abstract: An integrated circuit capacitor structure, includes a first electrode includes a cylindrical column, a ferroelectric layer around an exterior sidewall of the cylindrical column and a plurality of outer electrodes. The plurality of outer electrodes include a first outer electrode laterally adjacent to a first portion of an exterior of the ferroelectric layer and a second outer electrode laterally adjacent to a second portion of the exterior of the ferroelectric layer, wherein the second outer electrode is above the first outer electrode.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Sou-Chi Chang, Shriram Shivaraman, I-Cheng Tung, Tobias Brown-Heft, Devin R. Merrill, Che-Yun Lin, Seung Hoon Sung, Jack Kavalieros, Uygar Avci, Matthew V. Metz
  • Publication number: 20210398993
    Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gate stacks separate from FE capacitors of these cells. An example memory cell may be implemented as an IC device that includes a support structure (e.g., a substrate) and a transistor provided over the support structure and including a gate stack. The IC device also includes a FE capacitor having a first capacitor electrode, a second capacitor electrode, and a capacitor insulator of a FE material between the first capacitor electrode and the second capacitor electrode, where the FE capacitor is separate from the gate stack (i.e., is not integrated within the gate stack and does not have any layers that are part of the gate stack). The IC device further includes an interconnect structure, configured to electrically couple the gate stack and the first capacitor electrode.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Jack T. Kavalieros, Uygar E. Avci, Chia-Ching Lin, Seung Hoon Sung, Ashish Verma Penumatcha, Ian A. Young, Devin R. Merrill, Matthew V. Metz, I-Cheng Tung
  • Patent number: 11171243
    Abstract: Transistor structures may include a metal oxide contact buffer between a portion of a channel material and source or drain contact metallization. The contact buffer may improve control of transistor channel length by limiting reaction between contact metallization and the channel material. The channel material may be of a first composition and the contact buffer may be of a second composition.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 9, 2021
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Abhishek Sharma, Van Le, Jack Kavalieros, Shriram Shivaraman, Seung Hoon Sung, Tahir Ghani, Arnab Sen Gupta, Nazila Haratipour, Justin Weber
  • Publication number: 20210343856
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by providing tensile stress along a plane (e.g., x-axis) of a ferroelectric or anti-ferroelectric material of the ferroelectric/anti-ferroelectric based capacitor. Tensile stress is provided by a spacer comprising metal, semimetal, or oxide (e.g., metal or oxide of one or more of: Al, Ti, Hf, Si, Ir, or N). The tensile stress provides polar orthorhombic phase to the ferroelectric material and tetragonal phase to the anti-ferroelectric material. As such, memory window and reliability of the ferroelectric/anti-ferroelectric oxide thin film improves.
    Type: Application
    Filed: June 1, 2021
    Publication date: November 4, 2021
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Sou-Chi Chang, Chia-Ching Lin, Jack Kavalieros, Uygar Avci, Ian Young
  • Patent number: 11138499
    Abstract: An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 5, 2021
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Jack T. Kavalieros, Ian A. Young, Sasikanth Manipatruni, Ram Krishnamurthy, Uygar Avci, Gregory K. Chen, Amrita Mathuriya, Raghavan Kumar, Phil Knag, Huseyin Ekin Sumbul, Nazila Haratipour, Van H. Le
  • Publication number: 20210305398
    Abstract: A capacitor device includes a first electrode having a first metal alloy or a metal oxide, a relaxor ferroelectric layer adjacent to the first electrode, where the ferroelectric layer includes oxygen and two or more of lead, barium, manganese, zirconium, titanium, iron, bismuth, strontium, neodymium, potassium, or niobium and a second electrode coupled with the relaxor ferroelectric layer, where the second electrode includes a second metal alloy or a second metal oxide.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Nazila Haratipour, Tanay Gosavi, I-Cheng Tung, Seung Hoon Sung, Ian Young, Jack Kavalieros, Uygar Avci, Ashish Verma Penumatcha
  • Patent number: 11063131
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by providing tensile stress along a plane (e.g., x-axis) of a ferroelectric or anti-ferroelectric material of the ferroelectric/anti-ferroelectric based capacitor. Tensile stress is provided by a spacer comprising metal, semimetal, or oxide (e.g., metal or oxide of one or more of: Al, Ti, Hf, Si, Ir, or N). The tensile stress provides polar orthorhombic phase to the ferroelectric material and tetragonal phase to the anti-ferroelectric material. As such, memory window and reliability of the ferroelectric/anti-ferroelectric oxide thin film improves.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Sou-Chi Chang, Chia-Ching Lin, Jack Kavalieros, Uygar Avci, Ian Young
  • Publication number: 20210167182
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Seung Hoon SUNG, Ashish Verma PENUMATCHA, Sou-Chi CHANG, Devin MERRILL, I-Cheng TUNG, Nazila HARATIPOUR, Jack T. KAVALIEROS, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Chia-Ching LIN, Owen LOH, Shriram SHIVARAMAN, Eric Charles MATTSON
  • Publication number: 20210111179
    Abstract: A memory device comprises a bitline along a first direction. A wordline is along a second direction orthogonal to the first direction. An access transistor is coupled to the bitline and the wordline. A first ferroelectric capacitor is vertically aligned with and coupled to the access transistor. A second ferroelectric capacitor is vertically aligned with the first ferroelectric capacitor and coupled to the access transistor, wherein both the first ferroelectric capacitor and the second ferroelectric capacitor are controlled by the access transistor.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 15, 2021
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Nazila HARATIPOUR, Uygar E. AVCI
  • Publication number: 20200411692
    Abstract: Transistor structures may include a metal oxide contact buffer between a portion of a channel material and source or drain contact metallization. The contact buffer may improve control of transistor channel length by limiting reaction between contact metallization and the channel material. The channel material may be of a first composition and the contact buffer may be of a second composition.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Abhishek Sharma, Van Le, Jack Kavalieros, Shriram Shivaraman, Seung Hoon Sung, Tahir Ghani, Arnab Sen Gupta, Nazila Haratipour, Justin Weber
  • Publication number: 20200411686
    Abstract: A vertical transistor structure includes a material stack having a source material, a drain material, and a channel material therebetween. The vertical transistor structure further includes a gate electrode adjacent to a sidewall of the stack, where the sidewall includes the channel material, and at least a partial thickness of both the source material and the drain material. A gate dielectric is present between the sidewall of the stack and the gate electrode. The vertical transistor structure further includes a first metallization over a first area of the stack above the gate dielectric layer, and in contact with the gate electrode on sidewall of the stack. A second metallization is adjacent to the first metallization, where the second metallization is over a second area of the stack, and in contact with the source material or the drain material.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, I-cheng Tung, Abhishek A. Sharma, Arnab Sen Gupta, Van Le, Matthew V. Metz, Jack Kavalieros, Tahir Ghani
  • Publication number: 20200403081
    Abstract: Described is a transistor which includes: a source region; a drain region; and a gate region between the source and drain regions, wherein the gate region comprises: high-K dielectric material between spacers such that the high-K dielectric material is recessed; and metal electrode on the recessed high-K dielectric material. The gate recessed gate dielectric allows for using thick gate dielectric even with much advanced process technology nodes (e.g., 7 nm and below).
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventors: Seung Hoon Sung, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Matthew Metz, Michael Harper, Jack Kavalieros, Uygar Avci, Ian Young
  • Publication number: 20200395435
    Abstract: An improved trench capacitor structure is disclosed that allows for the formation of narrower capacitors. An example capacitor structure includes a first conductive layer on the sidewalls of an opening through a thickness of a dielectric layer, a capacitor dielectric layer on the first conductive layer, a second conductive layer on the capacitor dielectric layer, and a conductive fill material on the second conductive layer. The capacitor dielectric layer laterally extends above the opening and along a top surface of the dielectric layer, and the conductive fill material fills a remaining portion of the opening.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: NAZILA HARATIPOUR, CHIA-CHING LIN, SOU-CHI CHANG, IAN A. YOUNG, UYGAR E. AVCI, JACK T. KAVALIEROS
  • Publication number: 20200395460
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by providing tensile stress along a plane (e.g., x-axis) of a ferroelectric or anti-ferroelectric material of the ferroelectric/anti-ferroelectric based capacitor. Tensile stress is provided by a spacer comprising metal, semimetal, or oxide (e.g., metal or oxide of one or more of: Al, Ti, Hf, Si, Ir, or N). The tensile stress provides polar orthorhombic phase to the ferroelectric material and tetragonal phase to the anti-ferroelectric material. As such, memory window and reliability of the ferroelectric/anti-ferroelectric oxide thin film improves.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Sou-Chi Chang, Chia-Ching Lin, Jack Kavalieros, Uygar Avci, Ian Young
  • Publication number: 20200312950
    Abstract: A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200312949
    Abstract: A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200286687
    Abstract: Described is an ultra-dense ferroelectric memory. The memory is fabricated using a patterning method by that applies atomic layer deposition with selective dry and/or wet etch to increase memory density at a given via opening. A ferroelectric capacitor in one example comprises: a first structure (e.g., first electrode) comprising metal; a second structure (e.g., a second electrode) comprising metal; and a third structure comprising ferroelectric material, wherein the third structure is between and adjacent to the first and second structures, wherein a portion of the third structure is interdigitated with the first and second structures to increase surface area of the third structure. The increased surface area allows for higher memory density.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Nazila Haratipour, Seung Hoon Sung, Ashish Verma Penumatcha, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200286686
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Seung Hoon Sung, Owen Y. Loh, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200286685
    Abstract: Described is a ferroelectric based capacitor that reduces non-polar monoclinic phase and increases polar orthorhombic phase by epitaxial strain engineering in the oxide thin film and/or electrodes. As such, both memory window and reliability are improved. The capacitor comprises: a first structure comprising metal, wherein the first structure has a first lattice constant; a second structure comprising metal, wherein the second structure has a second lattice constant; and a third structure comprising ferroelectric material (e.g., oxide of Hf or Zr), wherein the third structure is between and adjacent to the first and second structures, wherein the third structure has a third lattice constant, and wherein the first and second lattice constants are smaller than the third lattice constant.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Seung Hoon Sung, Owen Y. Loh, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200105892
    Abstract: Embodiments herein describe techniques for a thin-film transistor (TFT). The transistor includes a source electrode oriented in a horizontal direction, and a channel layer in contact with a portion of the source electrode and oriented in a vertical direction substantially orthogonal to the horizontal direction. A gate dielectric layer conformingly covers a top surface of the source electrode and surfaces of the channel layer. A gate electrode conformingly covers a portion of the gate dielectric layer. A drain electrode is above the channel layer, oriented in the horizontal direction. A current path is to include a current portion from the source electrode along a gated region of the channel layer under the gate electrode in the vertical direction, and a current portion along an ungated region of the channel layer in the horizontal direction from the gate electrode to the drain electrode. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Nazila HARATIPOUR, Tahir GHANI, Jack T. KAVALIEROS, Gilbert DEWEY, Benjamin CHU-KUNG, Seung Hoon SUNG, Van H. LE, Shriram SHIVARAMAN, Abhishek SHARMA