Patents by Inventor Nicholas C. M. Fuller

Nicholas C. M. Fuller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080303069
    Abstract: A two-step nitrogen plasma method is used for stripping a photoresist layer from over a substrate. A first step within the two-step nitrogen plasma method uses a nitrogen plasma with ion activation to form from the photoresist layer over the substrate a treated photoresist layer over the substrate. A second step within the two-step nitrogen plasma method uses a second nitrogen plasma without ion activation to remove the treated photoresist layer from over the substrate. The method is particularly useful for stripping a patterned photoresist layer that is used for forming a gate electrode from a gate electrode material layer.
    Type: Application
    Filed: June 11, 2007
    Publication date: December 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas C.M. Fuller, Solomon Assefa, Ying Zhang
  • Patent number: 7439174
    Abstract: Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Dalton, Nicholas C. M. Fuller, Stephen M. Gates
  • Publication number: 20080175527
    Abstract: A method in effectuating the redirection of light which is propagated within a waveguide, and which eliminates the necessity for a bending of the waveguide, or the drawbacks encountered in directional changes in propagated light involving the need for sharp curves of essentially small-sized radii, which would resultingly lead to excessive losses in light. In this connection, the method relates to the fabricating and the provision of a wire-grid polarization beam splitter within an optical waveguide, which utilizes a diblock copolymer template to formulate the wire-grid.
    Type: Application
    Filed: October 11, 2007
    Publication date: July 24, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Gian-Luca Bona, Timothy J. Dalton, Nicholas C. M. Fuller, Roland Germann, Maurice McGlashan-Powell, Chandrasekhar Narayan, Robert L. Sandstrom
  • Publication number: 20080146037
    Abstract: Interconnect structures possessing a non-porous (dense) low-k organosilicate glass (OSG) film utilizing a porous low-k OSG film as an etch stop layer or a porous low-k OSG film using a non-porous OSG film as a hardmask for use in semiconductor devices are provided herein. The novel interconnect structures are capable of delivering improved device performance, functionality and reliability owing to the reduced effective dielectric constant of the stack compared with that of those conventionally employed and also because of the relatively uniform line heights made feasible by these unique and seemingly counterintuitive features.
    Type: Application
    Filed: February 21, 2008
    Publication date: June 19, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas C.M. Fuller, Timothy J. Dalton
  • Patent number: 7371461
    Abstract: Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: May 13, 2008
    Assignee: International Business Machines Corporation
    Inventors: Nicholas C. M. Fuller, Stephen McConnell Gates, Timothy J. Dalton
  • Patent number: 7352064
    Abstract: Methods of forming a metal line and/or via critical dimension (CD) in a single or dual damascene process on a semiconductor substrate, and the resist scheme implemented, are disclosed. The method includes forming a multiple layer resist scheme including a first planarizing layer of a first type material over the substrate, a second dielectric layer of a second type material over the planarizing layer, and a third photoresist layer of a third type material over the dielectric layer. The types of material alternate between organic and inorganic material. The third layer is patterned for the metal line and/or via CD. Sequential etching to form the metal line and/or via critical dimension using a tailored etch recipe particular to each of the first photoresist layer, the second dielectric layer and the third planarizing layer as each layer is exposed is then used. Accurate CD formation and adequate resist budget are provided.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: April 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Nicholas C. M. Fuller, Timothy J. Dalton, Raymond Joy, Yi-hsiung Lin, Chun Hui Low
  • Patent number: 7298935
    Abstract: A method in effectuating the redirection of light which is propagated within a waveguide, and which eliminates the necessity for a bending of the waveguide, or the drawbacks encountered in directional changes in propagated light involving the need for sharp curves of essentially small-sized radii, which would resultingly lead to excessive losses in light. In this connection, the method relates to the fabricating and the provision of a wire-grid polarization beam splitter within an optical waveguide, which utilizes a diblock copolymer template to formulate the wire-grid.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Gian-Luca Bona, Timothy J. Dalton, Nicholas C. M. Fuller, Roland Germann, Maurice McGlashan-Powell, Chandrasekhar Narayan, Robert L. Sandstrom
  • Patent number: 7253116
    Abstract: A high ion energy and high pressure O2/CO-based plasma for ashing field photoresist material subsequent to via-level damascene processing. The optimized plasma ashing process is performed at greater than approximately 300 mT pressure and ion energy greater than approximately 500 W conditions with an oxygen partial pressure of greater than approximately 85%. The rapid ash rate of the high pressure/high ion energy process and minimal dissociation conditions (no “source” power is applied) allow minimal interaction between the interlevel dielectric and ash chemistry to achieve minimal overall sidewall modification of less than approximately 5 nm.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Nicholas C. M. Fuller, Timothy J. Dalton
  • Patent number: 7049209
    Abstract: Methods of de-fluorinating a wafer surface after damascene processing and prior to photoresist removal are disclosed, as is a related structure. In one embodiment, the method places the wafer surface in a chamber and exposes the wafer surface to a plasma from a source gas including at least one of nitrogen (N2) and/or hydrogen (H2) at a low power density or ion density. The exposing step removes the chemisorbed and physisorbed fluorine residue present on the wafer surface (and chamber), and improves ultra low dielectric (ULK) interconnect structure robustness and integrity. The exposing step is operative due to the efficacy of hydrogen and nitrogen radicals at removing fluorine-based species and also due to the presence of a minimal amount of ion energy in the plasma. The low power density nitrogen and/or hydrogen-containing plasma process enables negligible ash/adhesion promoter interaction and reduces integration complexity during dual damascene processing of low-k OSG-based materials.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: May 23, 2006
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Dalton, Nicholas C. M. Fuller, Kaushik A. Kumar, Catherine Labelle