Patents by Inventor NICHOLAS POLOMOFF

NICHOLAS POLOMOFF has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190067210
    Abstract: A seal ring structure of an integrated circuit including a first discontinuous seal wall circumscribing a first portion of the integrated circuit, the first seal wall forming a first pattern on a substrate, and a second discontinuous seal wall circumscribing a second portion of the integrated circuit, the second seal wall forming a second pattern on the substrate and the second portion being at least partially offset from the first portion, wherein the first pattern of the first seal wall interlocks with the second pattern of the second seal wall such that the patterns are interweaved without intersecting, wherein a space is formed between the seal walls, the space creating a non-linear path to the integrated circuit, and wherein the seal ring structure fully circumscribes the integrated circuit. A method of forming such a seal ring structure is also disclosed.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Nicholas A. Polomoff, Vincent J. McGahay
  • Patent number: 10153232
    Abstract: A crack stop structure for an integrated circuit (IC) structure is disclosed. The structure can include: a first crack stop pillar laterally separated from a second crack stop pillar within an insulator region of the IC structure. The first crack stop pillar can include an overlapping via in contact with a top surface and at least one side surface of a first conductive element therebelow. The overlapping via of the first crack stop pillar may be in a given layer of the IC structure, and the second crack stop pillar may include a via in the given layer, the via extending to a different depth than the overlapping via. The via of the second crack stop pillar may be an overlapping via in contact with a top surface and at least one side surface of a second conductive element therebelow.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: December 11, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Robert J. Fox, III, Kevin M. Boyd, Nicholas A. Polomoff, Roderick A. Augur, Jeannine M. Trewhella
  • Publication number: 20180315707
    Abstract: A crack stop structure for an integrated circuit (IC) structure is disclosed. The structure can include: a first crack stop pillar laterally separated from a second crack stop pillar within an insulator region of the IC structure. The first crack stop pillar can include an overlapping via in contact with a top surface and at least one side surface of a first conductive element therebelow. The overlapping via of the first crack stop pillar may be in a given layer of the IC structure, and the second crack stop pillar may include a via in the given layer, the via extending to a different depth than the overlapping via. The via of the second crack stop pillar may be an overlapping via in contact with a top surface and at least one side surface of a second conductive element therebelow.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 1, 2018
    Inventors: Robert J. Fox, III, Kevin M. Boyd, Nicholas A. Polomoff, Roderick A. Augur, Jeannine M. Trewhella
  • Patent number: 10109600
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to continuous crackstop structures and methods of manufacture. The structure includes a continuous crackstop having a wall which switches back (switchbacks) on itself multiple times to form an enclosure about an active area of a chip.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: October 23, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vincent J. McGahay, Nicholas A. Polomoff
  • Patent number: 10090258
    Abstract: One illustrative crack-stop structure disclosed herein may include a first crack-stop metallization layer comprising a first metal line layer that has a plurality of openings formed therein and a second crack-stop metallization layer positioned above and adjacent the first crack-stop metallization layer, wherein the second crack-stop metallization layer has a second metal line layer and a via layer, and wherein the via layer comprises a plurality of vias having a portion that extends at least partially into the openings in the first metal line layer of the first crack-stop metallization layer so as to thereby form a stepped, non-planar interface between the first metal line layer of the first crack-stop metallization layer and the via layer of the second crack-stop metallization layer.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: October 2, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kevin Boyd, Robert Fox, Jeannine Trewhella, Roderick Alan Augur, Nicholas A. Polomoff
  • Patent number: 10068859
    Abstract: A structure for arresting the propagation of cracks during the dicing of a semiconductor wafer into individual chips includes a monolithic metallic plate that traverses multiple dielectric layers peripheral to an active region of a chip. One or more metallic plates may be formed using lithography and electroplating techniques between the active device region and a peripheral kerf region, where each metallic plate includes a concave feature that faces the kerf region of the wafer.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 4, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Nicholas A. Polomoff, Mohamed Rabie, Victoria L. Calero Diaz Del Castillo, Danielle Degraw, Michael Hecker
  • Publication number: 20180082965
    Abstract: A semiconductor structure includes an electrically conductive structure formed upon an uppermost organic layer of a semiconductor substrate. A capping layer is formed upon the uppermost organic layer covering the electrically conductive structure. A maskless selective removal lasering technique ejects portions of the capping layer while retaining the portion of the capping layer covering the electrically conductive structure. Portions of the capping layer are ejected from the uppermost organic layer by a shockwave as a result of the laser beam vaporizing the uppermost organic layer of the semiconductor substrate. Portions of the capping layer contacting the electrically conductive structure are retained by the conductive structure dissipating heat from the laser that would otherwise vaporize the uppermost organic layer of the semiconductor substrate.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 22, 2018
    Applicant: SUSS MicroTec Photonic Systems Inc.
    Inventors: Brian M. Erwin, Brittany L. Hedrick, Nicholas A. Polomoff, TaeHo Kim, Matthew E. Souter
  • Publication number: 20180076160
    Abstract: A semiconductor structure includes an electrically conductive structure formed upon an uppermost organic layer of a semiconductor substrate. A capping layer is formed upon the uppermost organic layer covering the electrically conductive structure. A maskless selective removal lasering technique ejects portions of the capping layer while retaining the portion of the capping layer covering the electrically conductive structure. Portions of the capping layer are ejected from the uppermost organic layer by a shockwave as a result of the laser beam vaporizing the uppermost organic layer of the semiconductor substrate. Portions of the capping layer contacting the electrically conductive structure are retained by the conductive structure dissipating heat from the laser that would otherwise vaporize the uppermost organic layer of the semiconductor substrate.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Applicant: SUSS MicroTec Photonic Systems Inc.
    Inventors: Brian M. Erwin, Brittany L. Hedrick, Nicholas A. Polomoff, TaeHo Kim, Matthew E. Souter
  • Patent number: 9824925
    Abstract: Alignment marks on a semiconductor device surface are exposed and exposed surfaces cleaned after an obscuring coating is applied over the surface and marks. The surface can be an attachment surface of the device and can include C4 solder bumps of a flip-chip type device and the coating can include a wafer level underfill coating that is substantially optically opaque. Laser ablation, such as with a UV laser, can remove the coating while minimizing heat transfer to the device.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Kevin S. Petrarca, Nicholas A. Polomoff, Katsuyuki Sakuma
  • Patent number: 9754823
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: September 5, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, SÜSS MICROTEC PHOTONIC SYSTEMS INC.
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler
  • Patent number: 9748135
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 29, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, SUSS MICROTEC PHOTONIC SYSTEMS INC.
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler
  • Publication number: 20170117241
    Abstract: A semiconductor structure includes an electrically conductive structure formed upon an uppermost organic layer of a semiconductor substrate. A capping layer is formed upon the uppermost organic layer covering the electrically conductive structure. A maskless selective removal lasering technique ejects portions of the capping layer while retaining the portion of the capping layer covering the electrically conductive structure. Portions of the capping layer are ejected from the uppermost organic layer by a shockwave as a result of the laser beam vaporizing the uppermost organic layer of the semiconductor substrate. Portions of the capping layer contacting the electrically conductive structure are retained by the conductive structure dissipating heat from the laser that would otherwise vaporize the uppermost organic layer of the semiconductor substrate.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 27, 2017
    Applicant: SUSS MicroTec Photonic Systems Inc.
    Inventors: Brian M. Erwin, Brittany L. Hedrick, Nicholas A. Polomoff, TaeHo Kim, Matthew E. Souter
  • Publication number: 20160365281
    Abstract: Alignment marks on a semiconductor device surface are exposed and exposed surfaces cleaned after an obscuring coating is applied over the surface and marks. The surface can be an attachment surface of the device and can include C4 solder bumps of a flip-chip type device and the coating can include a wafer level underfill coating that is substantially optically opaque. Laser ablation, such as with a UV laser, can remove the coating while minimizing heat transfer to the device.
    Type: Application
    Filed: June 11, 2015
    Publication date: December 15, 2016
    Inventors: Mukta G. Farooq, Kevin S. Petrarca, Nicholas A. Polomoff, Katsuyuki Sakuma
  • Publication number: 20160204028
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Application
    Filed: March 17, 2016
    Publication date: July 14, 2016
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler
  • Publication number: 20160184926
    Abstract: An ablation system includes an ablation tool configured to generate an energy beam to ablate an energy-sensitive material formed on at least one embedded feature of a workpiece. The ablation tool selects an initial fluence and an initial pulse rate of the energy beam to ablate a first portion of the energy-sensitive layer. The ablation tool further reduces at least one of the initial fluence and the initial pulse rate of the energy beam to ablate a second remaining portion of the energy-sensitive layer such that the embedded feature is exposed without being damaged or deformed.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 30, 2016
    Inventors: Courtney T. Sheets, Matthew E. Souter, Brian M. Erwin, Bouwe W. Leenstra, Nicholas A. Polomoff, Christopher L. Tessler
  • Patent number: 9343420
    Abstract: Electronic devices including solder bumps embedded in a pre-applied coating of underfill material and/or solder resist are fabricated, thereby improving chip-package interaction reliability. Underfill can be directly applied to a wafer, enabling increased filler loadings. Passages formed in the underfill and/or solder resist coating expose electrically conductive pads or metal pillars. Such passages can be filled with molten solder to form the solder bumps.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 17, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brian M. Erwin, Eric D. Perfecto, Nicholas A. Polomoff, Jae-Woong Nah
  • Publication number: 20160074968
    Abstract: A laser etching system includes a laser source configured to generate a plurality of laser pulses during an etching pass. A workpiece is aligned with respect to the laser source. The workpiece includes an etching material that is etched in response to receiving the plurality of laser pulses. A mask reticle is interposed between the laser source and the workpiece. The mask reticle includes at least one mask pattern configured to regulate the fluence or a number of laser pulses realized by the workpiece such that a plurality of features having different depths with respect to one another are etched in the etching material.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 17, 2016
    Inventors: Matthew E. Souter, Brian M. Erwin, Nicholas A. Polomoff, Christopher L. Tessler
  • Publication number: 20150357235
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Application
    Filed: August 18, 2015
    Publication date: December 10, 2015
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler
  • Publication number: 20150348910
    Abstract: A structure including a stack of conformal layers on top of a dielectric layer and within an opening in the dielectric layer, the stack of layers including a first layer, a second layer, a third layer, and a fourth layer, each formed successively one on top of another with the first layer being in direct contact with the dielectric layer, and a conductive feature located directly on top of the fourth layer within the opening.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 3, 2015
    Inventors: Charles L. Arvin, Harry D. Cox, Brian M. Erwin, John J. Garant, Ekta Misra, Nicholas A. Polomoff, Jennifer D. Schuler
  • Publication number: 20150348831
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicants: International Business Machines Corporation, SUSS MicroTec Photonic Systems Inc.
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler