Patents by Inventor Nobuo Matsuki

Nobuo Matsuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170211179
    Abstract: A deposition apparatus includes a chamber, a holding unit configured to hold a substrate in the chamber, a driving unit configured to move the holding unit holding the substrate such that the substrate passes through a deposition area in the chamber, a deposition unit configured to form a film on the substrate passing through the deposition area by supplying a deposition material to the deposition area, and a cooling unit configured to cool the holding unit.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Applicant: CANON ANELVA CORPORATION
    Inventors: Naoyuki NOZAWA, Nobuo MATSUKI, Reiji SAKAMOTO, Masahito ISHIHARA
  • Patent number: 8080282
    Abstract: A method for forming a silicon carbide film containing Si, C, O, H, and optionally N on a substrate placed in a reaction space, includes the steps of: introducing into the reaction space a precursor containing Si, C, O, and H and having at least one Si—O bond in its molecule; introducing into the reaction space an inert gas; applying RF power in the reaction space, wherein a ratio of a flow rate (sccm) of the inert gas to the RF power (W/cm2) is controlled at 30-850; and thereby depositing on the substrate a silicon carbide film containing Si, C, O, H, and optionally N.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: December 20, 2011
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Manabu Kato, Nobuo Matsuki
  • Patent number: 8003174
    Abstract: A method of forming a dielectric film, includes: introducing a siloxane gas essentially constituted by Si, O, C, and H and a silazane gas essentially constituted by Si, N, H, and optionally C into a reaction chamber where a substrate is placed; depositing a siloxane-based film including Si—N bonds on the substrate by plasma reaction; and annealing the siloxane-based film on the substrate in an annealing chamber to remove Si—N bonds from the film.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 23, 2011
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Woo Jin Lee, Nobuo Matsuki
  • Patent number: 7781352
    Abstract: A method of forming an inorganic silazane-based dielectric film includes: introducing a gas constituted by Si and H and a gas constituted by N and optionally H into a reaction chamber where an object is placed; controlling a temperature of the object at ?50° C. to 50° C.; and depositing by plasma reaction a film constituted by Si, N, and H containing inorganic silazane bonds.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: August 24, 2010
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Nobuo Matsuki, Jeongseok Ha
  • Patent number: 7718553
    Abstract: A method for forming an insulation film on a semiconductor substrate by plasma reaction includes: introducing into a reaction chamber a source gas of a silicon-containing hydrocarbon compound comprising in its molecule at least one Si—O bond and at least one bond selected from the group consisting of a Si—Si bond, Si—N bond, and Si—H bond; introducing into the reaction chamber an additive gas constituted by C, H, and optionally O; controlling a susceptor at a temperature of ?50° C. to 50° C.; forming by plasma reaction an insulation film constituted by Si, O, H, and optionally N on an irregular surface of a substrate at a deposition rate of 100 nm/min or less; and heat-treating the substrate with the insulation film, thereby increasing a density of the insulation film to more than 2.1 g/cm3 as a result of the heat treatment.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: May 18, 2010
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Nobuo Matsuki
  • Patent number: 7655577
    Abstract: A method for forming a silicon-containing insulation film on a substrate by plasma polymerization includes: introducing a reaction gas comprising (i) a source gas comprising a silicon-containing hydrocarbon cyclic compound containing at least one vinyl group (Si-vinyl compound), and (ii) an additive gas, into a reaction chamber where a substrate is placed; and applying radio-frequency power to the gas to cause plasma polymerization, thereby depositing an insulation film on the substrate.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 2, 2010
    Assignee: ASM Japan K.K.
    Inventors: Yasuyoshi Hyodo, Nobuo Matsuki, Masashi Yamaguchi, Atsuki Fukazawa, Naoki Ohara, Yijun Liu
  • Patent number: 7651959
    Abstract: A method of forming a dielectric film includes: introducing a source gas essentially constituted by Si, N, H, and optionally C and having at least one bond selected from Si—N, Si—Si, and Si—H into a reaction chamber where a substrate is placed; depositing a silazane-based film essentially constituted by Si, N, H, and optionally C on the substrate by plasma reaction at ?50° C. to 50° C., wherein the film is free of exposure of a solvent constituted essentially by C, H, and optionally O; and heat-treating the silazane-based film on the substrate in a heat-treating chamber while introducing an oxygen-supplying source into the heat-treating chamber to release C from the film and increase Si—O bonds in the film.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: January 26, 2010
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Jeongseok Ha, Nobuo Matsuki
  • Patent number: 7638441
    Abstract: A method forms a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (C?H?X?, wherein ? and ? are natural numbers of 5 or more; ? is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C.; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas. The liquid monomer is unsaturated and has no benzene structure.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: December 29, 2009
    Assignee: ASM Japan K.K.
    Inventors: Yoshinori Morisada, Nobuo Matsuki, Kamal Kishore Goundar
  • Publication number: 20090298257
    Abstract: A method of forming device isolation regions on a trench-formed silicon substrate and removing residual carbon therefrom includes providing a flowable, insulative material constituted by silicon, carbon, nitrogen, hydrogen, oxygen or any combination of two or more thereof; forming a thin insulative layer, by using the flowable, insulative material, in a trench located on a semiconductor substrate wherein the flowable, insulative material forms a conformal coating in a silicon and nitrogen rich condition whereas in a carbon rich condition, the flowable, insulative material vertically grows from the bottom of the trenches; and removing the residual carbon deposits from the flowable, insulative material by multi-step curing, such as O2 thermal annealing, ozone UV curing followed by N2 thermal annealing.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Applicant: ASM JAPAN K.K.
    Inventors: Woo Jin Lee, Atsuki Fukazawa, Nobuo Matsuki
  • Patent number: 7622369
    Abstract: A method of forming device isolation regions on a trench-formed silicon substrate and removing residual carbon therefrom includes providing a flowable, insulative material constituted by silicon, carbon, nitrogen, hydrogen, oxygen or any combination of two or more thereof; forming a thin insulative layer, by using the flowable, insulative material, in a trench located on a semiconductor substrate wherein the flowable, insulative material forms a conformal coating in a silicon and nitrogen rich condition whereas in a carbon rich condition, the flowable, insulative material vertically grows from the bottom of the trenches; and removing the residual carbon deposits from the flowable, insulative material by multi-step curing, such as O2 thermal annealing, ozone UV curing followed by N2 thermal annealing.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 24, 2009
    Assignee: ASM Japan K.K.
    Inventors: Woo Jin Lee, Atsuki Fukazawa, Nobuo Matsuki
  • Patent number: 7560144
    Abstract: A method of forming a film having a low dielectric constant, comprises the steps of: placing a substrate between an upper electrode and a lower electrode inside a reaction chamber, introducing a silicon-containing hydrocarbon compound source gas, an additive gas, and an inert gas into a space between the upper and lower electrodes by controlling a gas flow ratio, generating a plasma by applying RF power to the space between the upper and lower electrodes in a state in which an interval between the upper electrode and the substrate is narrower in the vicinity of a center of the substrate than that in the vicinity of its periphery, and forming a film having a low dielectric constant on the substrate at a deposition rate of less than approx. 790 nm/min by controlling a flow rate of the process gas.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: July 14, 2009
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Kiyoto Itoh, Tsunayuki Kimura, Nobuo Matsuki
  • Publication number: 20090156017
    Abstract: A method of forming a dielectric film, includes: introducing a siloxane gas essentially constituted by Si, O, C, and H and a silazane gas essentially constituted by Si, N, H, and optionally C into a reaction chamber where a substrate is placed; depositing a siloxane-based film including Si—N bonds on the substrate by plasma reaction; and annealing the siloxane-based film on the substrate in an annealing chamber to remove Si—N bonds from the film.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: ASM JAPAN K.K.
    Inventors: Atsuki FUKAZAWA, Woo Jin LEE, Nobuo MATSUKI
  • Publication number: 20090142935
    Abstract: A method of forming a dielectric film includes: introducing a source gas essentially constituted by Si, N, H, and optionally C and having at least one bond selected from Si—N, Si—Si, and Si—H into a reaction chamber where a substrate is placed; depositing a silazane-based film essentially constituted by Si, N, H, and optionally C on the substrate by plasma reaction at ?50° C. to 50° C., wherein the film is free of exposure of a solvent constituted essentially by C, H, and optionally O; and heat-treating the silazane-based film on the substrate in a heat-treating chamber while introducing an oxygen-supplying source into the heat-treating chamber to release C from the film and increase Si—O bonds in the film.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Applicant: ASM JAPAN K.K.
    Inventors: Atsuki FUKUZAWA, Jeongseok HA, Nobuo MATSUKI
  • Patent number: 7504344
    Abstract: A method of forming a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (C?H?X?, wherein ? and ? are natural numbers of 5 or more; ? is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C. which is not substituted by a vinyl group or an acetylene group; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: March 17, 2009
    Assignee: ASM Japan K.K.
    Inventors: Nobuo Matsuki, Yoshinori Morisada, Seijiro Umemoto, Jea Sik Lee
  • Publication number: 20090068852
    Abstract: A method forms a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (C?H?X?, wherein ? and ? are natural numbers of 5 or more; ? is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C.; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas. The liquid monomer is unsaturated and has no benzene structure.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 12, 2009
    Applicant: ASM JAPAN K.K.
    Inventors: Yoshinori MORISADA, Nobuo MATSUKI, Kamal Kishore GOUNDAR
  • Patent number: 7470633
    Abstract: A method forms a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (C?H?X?, wherein ? and ? are natural numbers of 5 or more; ? is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C.; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: December 30, 2008
    Assignee: ASM Japan K.K.
    Inventors: Nobuo Matsuki, Yoshinori Morisada, Seijiro Umemoto, Jea Sik Lee
  • Publication number: 20080305648
    Abstract: A method of forming an inorganic silazane-based dielectric film includes: introducing a gas constituted by Si and H and a gas constituted by N and optionally H into a reaction chamber where an object is placed; controlling a temperature of the object at ?50° C. to 50° C.; and depositing by plasma reaction a film constituted by Si, N, and H containing inorganic silazane bonds.
    Type: Application
    Filed: June 6, 2007
    Publication date: December 11, 2008
    Applicant: ASM JAPAN K.K.
    Inventors: Atsuki FUKAZAWA, Nobuo MATSUKI, Jeongseok HA
  • Publication number: 20080299326
    Abstract: A plasma CVD apparatus includes: a cooling susceptor for placing a substrate thereon and serving as an electrode; and a shower plate for introducing gas toward the susceptor via multiple throughholes formed therein. The shower plate serves as an electrode and is disposed in parallel to the susceptor. The cooling susceptor is made of a ceramic material provided with a cooling fluid flow path for passing a cooling fluid therethrough.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 4, 2008
    Applicant: ASM JAPAN K.K.
    Inventors: Atsuki Fukazawa, Nobuo Matsuki, Lee Woo Jin, Mikio Shimizu
  • Patent number: 7410915
    Abstract: A method of forming a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (C?H?X?, wherein ? and ? are natural numbers of 5 or more; ? is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C. which is not substituted by a vinyl group or an acetylene group; introducing the vaporized gas and CO2 gas or H2 gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas, thereby reducing extinction coefficient (k) at 193 nm and increasing mechanical hardness.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: August 12, 2008
    Assignees: ASM Japan K.K., Samsung Electronic Co., Ltd.
    Inventors: Yoshinori Morisada, Kamal Kishore Goundar, Masashi Yamaguchi, Nobuo Matsuki, Kyu Tae Na, Eun Kyung Baek
  • Patent number: 7354873
    Abstract: A method for forming an insulation film having filling property on a semiconductor substrate by plasma reaction includes: vaporizing a silicon-containing hydrocarbon having a Si—O bond compound to provide a source gas; introducing the source gas and a carrier gas without an oxidizing gas into a reaction space for plasma CVD processing; and forming an insulation film constituted by Si, O, H, and optionally C or N on a substrate by plasma reaction using a combination of low-frequency RF power and high-frequency RF power in the reaction space. The plasma reaction is activated while controlling the flow of the reaction gas to lengthen a residence time, Rt, of the reaction gas in the reaction space.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: April 8, 2008
    Assignee: ASM Japan K.K.
    Inventors: Atsuki Fukazawa, Nobuo Matsuki, Seijiro Umemoto