Patents by Inventor Nobuyuki Sugii

Nobuyuki Sugii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060073664
    Abstract: Provided is a technology capable of suppressing a reduction in electron mobility in a channel region formed in a strained silicon layer. A p type strained silicon layer is formed over a p type silicon-germanium layer formed over a semiconductor substrate. The p type strained layer has a thickness adjusted to be thicker than the critical film thickness at which no misfit dislocation occurs. Accordingly, misfit dislocations occur in the vicinity of the interface between the p type strained silicon layer and p type silicon-germanium layer. At a position which is below the end of a gate electrode and at which misfit dislocations occur, the impurity concentration of the n type strained silicon layer and n type silicon-germanium layer is 1×1019 cm?3 or less.
    Type: Application
    Filed: October 5, 2005
    Publication date: April 6, 2006
    Inventors: Masao Kondo, Nobuyuki Sugii, Yoshinobu Kimura
  • Publication number: 20050230683
    Abstract: To provide TFT of improved low-temperature polycrystalline layer that has higher electron mobility and assures less fluctuation in manufacture in view of realizing a liquid-crystal display device having a large display area by utilizing a glass substrate. A TFT having higher electron mobility can be realized within the predetermined range of characteristic fluctuation by utilizing the semiconductor thin-film (called quasi single crystal thin-film) formed of poly-crystal grain joined with the {111} twin-boundary of Diamond structure as the channel region (namely, active region) of TFT.
    Type: Application
    Filed: June 7, 2005
    Publication date: October 20, 2005
    Inventors: Shinya Yamaguchi, Masanobu Miyao, Nobuyuki Sugii, Seang-kee Park, Kiyokazu Nakagawa
  • Patent number: 6936875
    Abstract: With the invention, it is possible to avoid deterioration in short-channel characteristics, caused by a silicon germanium layer coming into contact with the channel of a strained SOI transistor. Further, it is possible to fabricate a double-gate type of strained SOI transistor or to implement mixedly mounting the strained SOI transistor and a conventional silicon or SOI transistor on the same wafer. According to the invention, for example, a strained silicon layer is grown on a strain-relaxed silicon germanium layer, and subsequently, portions of the silicon germanium layer are removed, thereby constituting a channel layer in the strained silicon layer.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: August 30, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Nobuyuki Sugii, Kazuhiro Ohnishi, Katsuyoshi Washio
  • Publication number: 20050173705
    Abstract: Gases for film formation are introduced from a plurality of holes provided at a gas nozzle into a processing chamber of a batch-type CVD film-forming apparatus to cause a turbulence of the gases within the processing chamber. In the state where the chamber is kept at a pressure within an atmospheric and quasi-atmospheric pressure region, a silicon-germanium film is epitaxially grown on a semiconductor wafer placed within the processing chamber. Subsequently, a strained silicon film is epitaxially grown on the silicon-germanium film. Thereafter, a semiconductor element is formed in the semiconductor wafer on which the silicon-germanium film and the strained silicon film have been formed, respectively.
    Type: Application
    Filed: April 12, 2005
    Publication date: August 11, 2005
    Inventors: Yasuichi Kondo, Wataru Hirasawa, Nobuyuki Sugii
  • Patent number: 6903372
    Abstract: To provide TFT of improved low-temperature polycrystalline layer that has higher electron mobility and assures less fluctuation in manufacture in view of realizing a liquid-crystal display device having a large display area by utilizing a glass substrate. A TFT having higher electron mobility can be realized within the predetermined range of characteristic fluctuation by utilizing the semiconductor thin-film (called quasi single crystal thin-film) formed of poly-crystal grain joined with the {111} twin-boundary of Diamond structure as the channel region (namely, active region) of TFT.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: June 7, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Yamaguchi, Masanobu Miyao, Nobuyuki Sugii, Seang-kee Park, Kiyokazu Nakagawa
  • Patent number: 6897129
    Abstract: Gases for film formation are introduced from a plurality of holes provided at a gas nozzle into a processing chamber of a batch-type CVD film-forming apparatus to cause a turbulence of the gases within the processing chamber. In the state where the chamber is kept at a pressure within an atmospheric and quasi-atmospheric pressure region, a silicon-germanium film is epitaxially grown on a semiconductor wafer placed within the processing chamber. Subsequently, a strained silicon film is epitaxially grown on the silicon-germanium film. Thereafter, a semiconductor element is formed in the semiconductor wafer on which the silicon-germanium film and the strained silicon film have been formed, respectively.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: May 24, 2005
    Assignees: Renesas Technology Corp., Renesas Eastern Japan Semiconductor, Inc.
    Inventors: Yasuichi Kondo, Wataru Hirasawa, Nobuyuki Sugii
  • Patent number: 6888162
    Abstract: An electronic apparatus employs a polycrystalline semiconductor thin film structure formed of an insulating substrate and a plurality of polycrystalline layers laminated on the insulating substrate. A plurality of transistors are formed at the surface of the polycrystalline semiconductor thin film structure, each transistor being formed in a region of one of a plurality of crystal grains disseminated on the surface of the polycrystalline layers. A number of crystal grains in each of the polycrystalline layers is gradually reduced from a lower layer to an upper layer.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: May 3, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Yamaguchi, Masanobu Miyao, Kiyokazu Nakagawa, Nobuyuki Sugii
  • Patent number: 6878606
    Abstract: A method and device are provided for shallow trench isolation for a silicon wafer containing silicon-germanium. In one example, the method comprises forming a trench region in a silicon-germanium layer of a semiconductor substrate containing a single crystal silicon-germanium layer on the surface; forming a first single crystal silicon layer in the trench region and an active region; oxidizing the first single crystal silicon layer; forming a first thermal oxide layer on the surface of the first single crystal silicon layer; forming a device isolation region; embedding an insulator in the trench region; and forming a device in an active region over the single crystal silicon-germanium layer separated by the device isolation region, wherein the step of forming the device in the active region further includes forming a doped region of a depth to reach within the single crystal silicon-germanium layer below the first single crystal silicon layer.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: April 12, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Kazuhiro Ohnishi, Nobuyuki Sugii, Takahiro Onai
  • Publication number: 20050032327
    Abstract: A method and device are provided for shallow trench isolation for a silicon wafer containing silicon-germanium. In one example, the method comprises forming a trench region in a silicon-germanium layer of a semiconductor substrate containing a single crystal silicon-germanium layer on the surface; forming a first single crystal silicon layer in the trench region and an active region; oxidizing the first single crystal silicon layer; forming a first thermal oxide layer on the surface of the first single crystal silicon layer; forming a device isolation region; embedding an insulator in the trench region; and forming a device in an active region over the single crystal silicon-germanium layer separated by the device isolation region, wherein the step of forming the device in the active region further includes forming a doped region of a depth to reach within the single crystal silicon-germanium layer below the first single crystal silicon layer.
    Type: Application
    Filed: September 9, 2004
    Publication date: February 10, 2005
    Inventors: Kazuhiro Ohnishi, Nobuyuki Sugii, Takahiro Onai
  • Publication number: 20050017236
    Abstract: In order to provide a semiconductor device having a field effect transistor with a low power consumption and a high speed by use of the combination of Si and an element such as Ge, C or the like of the same group as Si, a strain is applied by a strain applying semiconductor layer 2 to a channel forming layer 1 having a channel of the field effect transistor formed therein so that the mobility of carriers in the channel is made larger than the mobility of carriers in that material of the channel forming layer which is unstrained.
    Type: Application
    Filed: August 18, 2004
    Publication date: January 27, 2005
    Inventors: Nobuyuki Sugii, Kiyokazu Nakagawa, Shinya Yamaguchi, Masanobu Miyao
  • Publication number: 20050003573
    Abstract: In a semiconductor multi-layer structure in which a first SiGe layer having a first conductivity-type and high impurity concentration, a second SiGe layer having the first conductivity-type and a low impurity concentration and a Si layer having a low impurity concentration are formed one on another in this order on a Si substrate of the first conductivity-type, a channel is formed in a part of the Si layer and a source electrode passes through the second SiGe layer of low impurity concentration to electrically contact the first SiGe layer of high impurity concentration or the substrate.
    Type: Application
    Filed: July 26, 2004
    Publication date: January 6, 2005
    Inventors: Nobuyuki Sugii, Masatoshi Morikawa, Isao Yoshida, Katsuyoshi Washio
  • Publication number: 20040256613
    Abstract: An (SiGe)C layer having a stoichiometric ratio of about 1:1 is locally formed on an Si layer, a large forbidden band width semiconductor device is prepared inside the layered structure thereof and an Si semiconductor integrated circuit is formed in the regions not formed with the layered structure, whereby high frequency high power operation of the device is enabled by the large forbidden band width semiconductor device and high performance is attained by hybridization of the Si integrated circuit.
    Type: Application
    Filed: March 2, 2004
    Publication date: December 23, 2004
    Inventors: Katsuya Oda, Nobuyuki Sugii, Makoto Miura, Isao Suzumura, Katsuyoshi Washio
  • Patent number: 6815707
    Abstract: In a semiconductor multi-layer structure in which a first SiGe layer having a first conductivity-type and high impurity concentration, a second SiGe layer having the first conductivity-type and a low impurity concentration and a Si layer having a low impurity concentration are formed one on another in this order on a Si substrate of the first conductivity-type, a channel is formed in a part of the Si layer and a source electrode passes through the second SiGe layer of low impurity concentration to electrically contact the first SiGe layer of high impurity concentration or the substrate.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: November 9, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Nobuyuki Sugii, Masatoshi Morikawa, Isao Yoshida, Katsuyoshi Washio
  • Publication number: 20040121554
    Abstract: A method and device are provided for shallow trench isolation for a silicon wafer containing silicon-germanium. In one example, the method comprises forming a trench region in a silicon-germanium layer of a semiconductor substrate containing a single crystal silicon-germanium layer on the surface; forming a first single crystal silicon layer in the trench region and an active region; oxidizing the first single crystal silicon layer; forming a first thermal oxide layer on the surface of the first single crystal silicon layer; forming a device isolation region; embedding an insulator in the trench region; and forming a device in an active region over the single crystal silicon-germanium layer separated by the device isolation region, wherein the step of forming the device in the active region further includes forming a doped region of a depth to reach within the single crystal silicon-germanium layer below the first single crystal silicon layer.
    Type: Application
    Filed: May 28, 2003
    Publication date: June 24, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Kazuhiro Ohnishi, Nobuyuki Sugii, Takahiro Onai
  • Publication number: 20040108559
    Abstract: With the invention, it is possible to avoid deterioration in short-channel characteristics, caused by a silicon germanium layer coming into contact with the channel of a strained SOI transistor. Further, it is possible to fabricate a double-gate type of strained SOI transistor or to implement mixedly mounting the strained SOI transistor and a conventional silicon or SOI transistor on the same wafer. According to the invention, for example, a strained silicon layer is grown on a strain-relaxed silicon germanium layer, and subsequently, portions of the silicon germanium layer are removed, thereby constituting a channel layer in the strained silicon layer.
    Type: Application
    Filed: September 30, 2003
    Publication date: June 10, 2004
    Applicant: Renesas Technology Corp.
    Inventors: Nobuyuki Sugii, Kazuhiro Ohnishi, Katsuyoshi Washio
  • Patent number: 6727514
    Abstract: At least one of a semiconductor thin-film for forming a picture display portion and a semiconductor thin-film for forming a peripheral circuit portion, which are accumulated on one common insulative substrate, is constructed with a semiconductor thin-film having a plural number of semiconductor crystalline portions formed to be divided and disposed in a matrix-like, and TFTs are provided in the semiconductor thin-film by bringing those semiconductor single crystal portions into active portions thereof. For that purpose, a crystallization accelerating material is adhered at the position of lattice points of a matrix and is treated with heating process, for forming the single crystal portions disposed in the matrix-like manner, so as to form the TFTs on the surface thereof, thereby completing the thin-film semiconductor integrated circuit device.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: April 27, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Seong-kee Park, Kiyokazu Nakagawa, Nobuyuki Sugii, Shinya Yamaguchi
  • Patent number: 6723541
    Abstract: A method of producing a strain-relaxed Si—Ge virtual substrate for use in a semiconductor substrate which is planar and of less defects for improving the performance of a field effect semiconductor device, which method comprises covering an Si—Ge layer formed on an SOI substrate with an insulating layer to prevent evaporation of Ge, heating the mixed layer of silicon and germanium at a temperature higher than a solidus curve temperature determined by the germanium content of the Si—Ge layer into a partially melting state, and diffusing germanium to the Si layer on the insulating layer, thereby solidifying the molten Si—Ge layer to obtain a strain-relaxed Si—Ge virtual substrate.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: April 20, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Sugii, Shinya Yamaguchi, Katsuyoshi Washio
  • Publication number: 20030221611
    Abstract: Gases for film formation are introduced from a plurality of holes provided at a gas nozzle into a processing chamber of a batch-type CVD film-forming apparatus to cause a turbulence of the gases within the processing chamber. In the state where the chamber is kept at a pressure within an atmospheric and quasi-atmospheric pressure region, a silicon-germanium film is epitaxially grown on a semiconductor wafer placed within the processing chamber. Subsequently, a strained silicon film is epitaxially grown on the silicon-germanium film. Thereafter, a semiconductor element is formed in the semiconductor wafer on which the silicon-germanium film and the strained silicon film have been formed, respectively.
    Type: Application
    Filed: May 19, 2003
    Publication date: December 4, 2003
    Applicants: Hitachi, Ltd., Renesas Eastern Japan Semiconductor, Inc.
    Inventors: Yasuichi Kondo, Wataru Hirasawa, Nobuyuki Sugii
  • Publication number: 20030132437
    Abstract: The present invention provides a method for crystallizing a polycrystalline silicon layers used for the material of thin film transistors at large size (more than 8 microns) with crystal orientation aligned to a specific orientation, and for controlling the positioning of crystal grains at high precision. On a polycrystalline silicon layer, projections at regular intervals are formed by using anisotropic etching and a photomask. The tip of projections is comprised of single crystal silicon of a specific crystal orientation selectively left by the anisotropic etching, which is a candidate for nuclei of amorphous silicon to be deposited thereon. By iterating above process at a plurality of times, and by gradually enlarging the interval, span, size and height of projections, the size of crystal grains of silicon at the surface may be enlarged to the extent required. Thereby silicon crystal grains of large grains with crystal orientation aligned may be formed at controllable positions.
    Type: Application
    Filed: January 30, 2003
    Publication date: July 17, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Shinya Yamaguchi, Masanobu Miyao, Kiyokazu Nakagawa, Nobuyuki Sugii
  • Patent number: 6545294
    Abstract: The present invention provides an apparatus having a semiconductor device including a plurality of transistors formed on respective single crystal silicon regions of enlarged grain size. On a polycrystalline silicon layer, projections at regular intervals are formed by using anisotropic etching and a photomask. The tips of projections are composed of single crystal silicon of a specific crystal orientation selectively left by the anisotropic etching, which is a candidate for nuclei of amorphous silicon to be deposited thereon. By iterating the above process a plurality of times, and by gradually enlarging the pitch, span, size and height of projections, the size of the crystal grains of silicon at the surface may be enlarged to the extent required. Thereby, silicon crystal grains of large grain size with the crystal orientation aligned may be formed at controllable positions.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: April 8, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Yamaguchi, Masanobu Miyao, Kiyokazu Nakagawa, Nobuyuki Sugii