Patents by Inventor Oleg Golonzka

Oleg Golonzka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030806
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 2, 2023
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Patent number: 11569370
    Abstract: An integrated circuit structure comprises a semiconductor fin protruding through a trench isolation region above a substrate. A gate structure is over the semiconductor fin. A plurality of vertically stacked nanowires is through the gate structure, wherein the plurality of vertically stacked nanowires includes a top nanowire adjacent to a top of the gate structure, and a bottom nanowire adjacent to a top of the semiconductor fin. A dielectric material covers only a portion of the plurality of vertically stacked nanowires outside the gate structure, such that one or more one of the plurality of vertically stacked nanowires starting with the top nanowire is exposed from the dielectric material. Source and drain regions are on opposite sides of the gate structure connected to the exposed ones of the plurality of vertically stacked nanowires.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: January 31, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Vivek Thirtha, Shu Zhou, Nitesh Kumar, Biswajeet Guha, William Hsu, Dax Crum, Oleg Golonzka, Tahir Ghani, Christopher Kenyon
  • Publication number: 20220416041
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of making semiconductor devices. In an embodiment, a semiconductor device comprises a substrate, where the substrate is a dielectric material, and a vertical stack of semiconductor channels over the substrate. In an embodiment, the semiconductor device further comprises a source at a first end of the semiconductor channels, a drain at a second end of the semiconductor channels, and a barrier between a bottom surface of the source and the substrate.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Mohammad HASAN, William HSU, Biswajeet GUHA, Oleg GOLONZKA, Tahir GHANI, Vivek THIRTHA, Nitesh KUMAR
  • Publication number: 20220416042
    Abstract: Gate-all-around integrated circuit structures having reduced gate height structures and subfins, and method of fabricating gate-all-around integrated circuit structures having reduced gate height structures, are described. For example, an integrated circuit structure includes a plurality of horizontal nanowires above a subfin, and an isolation structure on either side of the subfin. A gate stack is over the plurality of nanowires, around individual nanowires, and over the subfin. Gate spacers are on either side of the gate stack, and a dielectric capping material is inside the gate spacers with shoulder portions inside the gate stack.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: William HSU, Leonard P. GULER, Vivek THIRTHA, Nitesh KUMAR, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20220415890
    Abstract: Integrated circuit structures having metal gates with tapered plugs, and methods of fabricating integrated circuit structures having metal gates with tapered plugs, are described. For example, includes a fin having a portion protruding above a shallow trench isolation (STI) structure. A gate dielectric material layer is over the protruding portion of the fin and over the STI structure. A conductive gate layer is over the gate dielectric material layer. A conductive gate fill material is over the conductive gate layer. A dielectric gate plug is laterally spaced apart from the fin. The dielectric gate plug is on the STI structure, and the dielectric gate plug has sides tapered outwardly from a top of the dielectric gate plug to a bottom of the dielectric gate plug.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Mohammad HASAN, Biswajeet GUHA, Oleg GOLONZKA, Leonard P. GULER, Leah SHOER, Daniel G. OUELLETTE, Pedro FRANCO NAVARRO, Tahir GHANI
  • Publication number: 20220416040
    Abstract: Released fins for advanced integrated circuit structure fabrication are described. For example, an integrated circuit structure includes a sub-fin. A dielectric spacer material is on the sub-fin. A fin is on the dielectric spacer material. A void in the dielectric spacer material, the void vertically between the sub-fin and the fin.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Leonard P. GULER, Oleg GOLONZKA, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20220416039
    Abstract: An integrated circuit structure comprises a first and second vertical arrangement of horizontal nanowires in a PMOS region and in an NMOS region. A first gate stack having a P-type conductive layer surrounds the first vertical arrangement of horizontal nanowires. A second gate stack surrounds the second vertical arrangement of horizontal nanowires. In one embodiment, the second gate stack has an N-type conductive layer, the P-type conductive layer is over the second gate stack, and an N-type conductive fill is between N-type conductive layer and the P-type conductive layer to provide same polarity metal filled gates. In another embodiment, the second gate stack has an N-type conductive layer comprising Titanium (Ti) and “Nitrogen (N) having a low saturation thickness of 3-3.5 nm surrounding the nanowires, and the N-type conductive layer is covered by the P-type conductive layer.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Dan S. LAVRIC, Dax M. CRUM, David J. TOWNER, Orb ACTON, Jitendra Kumar JHA, YenTing CHIU, Mohit K. HARAN, Oleg GOLONZKA, Tahir GHANI
  • Patent number: 11502254
    Abstract: A memory device structure includes a first electrode, a second electrode, a switching layer between the first electrode and the second electrode, where the switching layer is to transition between first and second resistive states at a voltage threshold. The memory device further includes an oxygen exchange layer between the switching layer and the second electrode, where the oxygen exchange layer includes a metal and a sidewall oxide in contact with a sidewall of the oxygen exchange layer. The sidewall oxide includes the metal of the oxygen exchange layer and oxygen, and has a lateral thickness that exceed a thickness of the switching layer.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Nathan Strutt, Albert Chen, Oleg Golonzka
  • Patent number: 11495496
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: November 8, 2022
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Patent number: 11489112
    Abstract: An apparatus, includes an interconnect, including a conductive material, above a substrate and a resistive random access memory (RRAM) device coupled to the interconnect. The RRAM device includes an electrode structure above the interconnect, where an upper portion of the electrode structure has a first width. The RRAM device further includes a switching layer on the electrode structure, where the switching layer has the first width and an oxygen exchange layer, having a second width less than the first width, on a portion of the switching layer. The RRAM device further includes a top electrode above the oxygen exchange layer, where the top electrode has the second width and an encapsulation layer on a portion of the switching layer, where the switching layer extends along a sidewall of the oxygen exchange layer.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: November 1, 2022
    Assignee: INTEL CORPORATION
    Inventors: Namrata S. Asuri, Oleg Golonzka, Nathan Strutt, Patrick J. Hentges, Trinh T. Van, Hiten Kothari, Ameya S. Chaudhari, Matthew J. Andrus, Timothy E. Glassman, Dragos Seghete, Christopher J. Wiegand, Daniel G. Ouellette
  • Patent number: 11462684
    Abstract: An RRAM device is disclosed. The RRAM device includes a bottom electrode, a high-k material on the bottom electrode, a top electrode, a top contact on the top electrode and an encapsulating layer of Al2O3. The encapsulating layer encapsulates the bottom electrode, the high-k material, the top electrode and the top contact.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Albert Chen, Nathan Strutt, Oleg Golonzka, Pedro Quintero, Christopher J. Jezewski, Elijah V. Karpov
  • Publication number: 20220285527
    Abstract: Described herein are fabrication processes and resulting transistor arrangements with trench contacts that have two parts—a first trench contact (TCN1) and a second trench contact (TCN2)—stacked over one another, and with gate contacts (VCGs). In such transistor arrangements, the TCN1 may be self-aligned to adjacent gates and may be used to make cell-level connections, the TCN2 may also make cell-level connections and may be provided after the self-aligned TCN1 formation and may have an inverse taper shape, the spacer around the TCN2 may be a higher dielectric constant dielectric material than conventional spacer materials, and the VCGs may be formed without the presence of any gate caps or after using only thin temporary gate caps. Fabrication processes and transistor arrangement described herein may provide several improvements in terms of increased edge placement error margin, cost-efficiency, and device performance.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 8, 2022
    Applicant: Intel Corporation
    Inventors: Andy Chih-Hung Wei, Oleg Golonzka, Farshid Adibi-Rizi
  • Patent number: 11437567
    Abstract: An apparatus comprises a magnetic tunnel junction (MTJ) including a free magnetic layer, a fixed magnetic layer, and a tunnel barrier between the free and fixed layers, the tunnel barrier directly contacting a first side of the free layer, a capping layer contacting the second side of the free magnetic layer and boron absorption layer positioned a fixed distance above the capping layer.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Justin Brockman, Christopher Wiegand, MD Tofizur Rahman, Daniel Ouelette, Angeline Smith, Juan Alzate Vinasco, Charles Kuo, Mark Doczy, Kaan Oguz, Kevin O'Brien, Brian Doyle, Oleg Golonzka, Tahir Ghani
  • Patent number: 11430944
    Abstract: An apparatus includes a first interconnect structure above a substrate, a memory device above and coupled with the first interconnect structure in a memory region. The memory device includes a non-volatile memory element, an electrode on the non-volatile memory element, and a metallization structure on a portion of the electrode. The apparatus further includes a second interconnect structure in a logic region above the substrate, where the second interconnect structure is laterally distant from the first interconnect structure. The logic region further includes a second metallization structure coupled to the second interconnect structure and a conductive structure between the second metallization structure and the second interconnect structure. The apparatus further includes a dielectric spacer that extends from the memory device to the conductive structure.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 30, 2022
    Assignee: INTEL CORPORATION
    Inventors: Christopher Wiegand, Gokul Malyavanatham, Oleg Golonzka
  • Patent number: 11430948
    Abstract: A memory device includes a bottom electrode above a substrate, a first switching layer on the bottom electrode, a second switching layer including aluminum on the first switching layer, an oxygen exchange layer on the second switching layer and a top electrode on the oxygen exchange layer. The presence of the second switching layer including aluminum on the first switching layer enables a reduction in electro-forming voltage of the memory device.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 30, 2022
    Assignee: INTEL CORPORATION
    Inventors: Timothy Glassman, Dragos Seghete, Nathan Strutt, Namrata S. Asuri, Oleg Golonzka, Hiten Kothari, Matthew J. Andrus
  • Patent number: 11411173
    Abstract: Material stacks for perpendicular spin transfer torque memory (pSTTM) devices, pSTTM devices and computing platforms employing such material stacks, and methods for forming them are discussed. The material stacks include a cladding layer of predominantly tungsten on a protective layer, which is in turn on an oxide capping layer over a magnetic junction stack. The cladding layer reduces oxygen dissociation from the oxide capping layer for improved thermal stability and retention.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: Angeline Smith, Justin Brockman, Tofizur Rahman, Daniel Ouellette, Andrew Smith, Juan Alzate Vinasco, James ODonnell, Christopher Wiegand, Oleg Golonzka
  • Publication number: 20220246529
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: Bernhard SELL, Oleg GOLONZKA
  • Patent number: 11404630
    Abstract: A material layer stack for a pSTTM memory device includes a magnetic tunnel junction (MTJ) stack, a oxide layer, a protective layer and a capping layer. The MTJ includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free magnetic layer disposed on the tunnel barrier. The oxide layer, which enables an increase in perpendicularity of the pSTTM material layer stack, is disposed on the free magnetic layer. The protective layer is disposed on the oxide layer, and acts as a protective barrier to the oxide from physical sputter damage during subsequent layer deposition. A conductive capping layer with a low oxygen affinity is disposed on the protective layer to reduce iron-oxygen de-hybridization at the interface between the free magnetic layer and the oxide layer. The inherent non-oxygen scavenging nature of the conductive capping layer enhances stability and reduces retention loss in pSTTM devices.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Md Tofizur Rahman, Christopher J. Wiegand, Kaan Oguz, Justin S. Brockman, Daniel G. Ouellette, Brian Maertz, Kevin P. O'Brien, Mark L. Doczy, Brian S. Doyle, Oleg Golonzka, Tahir Ghani
  • Patent number: 11380838
    Abstract: A memory device method of fabrication that includes a first electrode having a first conductive layer including titanium and nitrogen and a second conductive layer on the first conductive layer that includes tantalum and nitrogen. The memory device further includes a magnetic tunnel junction (MTJ) on the first electrode. In some embodiments, at least a portion of the first conductive layer proximal to an interface with the second conductive layer includes oxygen.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 5, 2022
    Assignee: Intel Corporation
    Inventors: Justin Brockman, Conor Puls, Stephen Wu, Christopher Wiegand, Tofizur Rahman, Daniel Ouellette, Angeline Smith, Andrew Smith, Pedro Quintero, Juan Alzate-Vinasco, Oleg Golonzka
  • Patent number: 11342499
    Abstract: Approaches for fabricating RRAM stacks with reduced forming voltage, and the resulting structures and devices, are described. In an example, a resistive random access memory (RRAM) device includes a conductive interconnect in an inter-layer dielectric (ILD) layer above a substrate. An RRAM element is on the conductive interconnect, the RRAM element including a first electrode layer on the uppermost surface of the conductive interconnect. A resistance switching layer is on the first electrode layer, the resistance switching layer including a first metal oxide material layer on the first electrode layer, and a second metal oxide material layer on the first metal oxide material layer, the second metal oxide material layer including a metal species not included in the first metal oxide material layer. An oxygen exchange layer is on the second metal oxide material layer of the resistance switching layer. A second electrode layer is on the oxygen exchange layer.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: May 24, 2022
    Assignee: Intel Corporation
    Inventors: Timothy E. Glassman, Dragos Seghete, Nathan Strutt, Namrata S. Asuri, Oleg Golonzka