Patents by Inventor Patrick Marks

Patrick Marks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250059606
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Application
    Filed: October 31, 2024
    Publication date: February 20, 2025
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Patent number: 12163191
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 10, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Publication number: 20240384348
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Michael SCHNALL-LEVIN, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Publication number: 20240354607
    Abstract: A visualization system comprising a persistent memory, storing a dataset, and a non-persistent memory implements a pattern visualizing method. The dataset contains discrete attribute values for each first entity of a first type in a plurality of first entities of the first type and discrete attribute values for each first entity of a second type in a plurality of first entities of the second type for each second entity in a plurality of second entities. The dataset is compressed by blocked compression and represents discrete attribute values in both compressed sparse row and column formats. The discrete attribute values are clustered to assign each second entity to a cluster in a plurality of clusters.
    Type: Application
    Filed: April 8, 2024
    Publication date: October 24, 2024
    Inventors: Alexander Y. Wong, Jeffrey Mellen, Kevin J. Wu, Paul Ryvkin, Preyas Shah, Patrick Marks, Niranjan Srinivas
  • Publication number: 20240339178
    Abstract: Systems and methods for analyzing first and second strings against a ground truth string are provided. A construct representing a plurality of components is obtained, each component for a different portion of the truth string. The construct comprises a plurality of measurement string sampling pools each having an identifier and a corresponding plurality of measurement samplings corresponding to one or two of the components. Each sampling has the identifier and a portion of the first or second string. Samplings are assigned to first, second or third classes when coding a portion of the first string, second string, or both the first and second string. First and second positions are tested for sequence events by calculating a plurality of sequence event models using assumptions on the components having samplings encompassing the first and second positions and class assignments. These assumptions are updated using the calculated models and the models are recalculated.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 10, 2024
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks
  • Patent number: 12054773
    Abstract: The present disclosure provides methods and systems for producing full-length sequencing information of transcriptomes from single cells or from the bulk. Random ligation and circularization of barcoded or non-barcoded complementary deoxyribonucleic molecules can be used to provide a circular template for amplification and subsequent sequencing.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: August 6, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Vijay Kumar Sreenivasa Gopalan, Paul Ryvkin, Zachary Bent, Jessica Michele Terry, David Jaffe, Patrick Marks, Tarjei Sigurd Mikkelsen
  • Patent number: 12046330
    Abstract: Systems and methods for analyzing first and second strings against a ground truth string are provided. A construct representing a plurality of components is obtained, each component for a different portion of the truth string. The construct comprises a plurality of measurement string sampling pools each having an identifier and a corresponding plurality of measurement samplings corresponding to one or two of the components. Each sampling has the identifier and a portion of the first or second string. Samplings are assigned to first, second or third classes when coding a portion of the first string, second string, or both the first and second string. First and second positions are tested for sequence events by calculating a plurality of sequence event models using assumptions on the components having samplings encompassing the first and second positions and class assignments. These assumptions are updated using the calculated models and the models are recalculated.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: July 23, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks
  • Patent number: 11954614
    Abstract: A visualization system comprising a persistent memory, storing a dataset, and a non-persistent memory implements a pattern visualizing method. The dataset contains discrete attribute values for each first entity of a first type in a plurality of first entities of the first type and discrete attribute values for each first entity of a second type in a plurality of first entities of the second type for each second entity in a plurality of second entities. The dataset is compressed by blocked compression and represents discrete attribute values in both compressed sparse row and column formats. The discrete attribute values are clustered to assign each second entity to a cluster in a plurality of clusters.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 9, 2024
    Assignee: 10X GENOMICS, INC.
    Inventors: Alexander Y. Wong, Jeffrey Mellen, Kevin J. Wu, Paul Ryvkin, Preyas Shah, Patrick Marks, Niranjan Srinivas
  • Patent number: 11844666
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: March 23, 2023
    Date of Patent: December 19, 2023
    Assignee: PACIFIC BIOSCIENCES OF CALIFORNIA, INC.
    Inventors: Benjamin Flusberg, Jonas Korlach, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Dale Webster, Jeremiah Hanes
  • Publication number: 20230268030
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: March 23, 2023
    Publication date: August 24, 2023
    Inventors: Benjamin Flusberg, Jonas Korlach, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Dale Webster, Jeremiah Hanes
  • Publication number: 20230268029
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: March 23, 2023
    Publication date: August 24, 2023
    Inventors: Benjamin Flusberg, Jonas Korlach, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Dale Webster, Jeremiah Hanes
  • Publication number: 20210295947
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Application
    Filed: November 13, 2020
    Publication date: September 23, 2021
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Patent number: 11081208
    Abstract: Described are computer-implemented methods, systems, and media for de novo phased diploid assembly of nucleic acid sequence data generated from a nucleic acid sample of an individual utilizing nucleic acid tags to preserve long-range sequence context for the individual such that a subset of short-read sequence data derived from a common starting sequence shares a common tag. The phased diploid assembly is achieved without alignment to a reference sequence derived from organisms other than the individual. The methods, systems, and media described are computer-resource efficient, allowing scale-up.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: August 3, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: David Jaffe, Patrick Marks, Michael Schnall-Levin, Neil Weisenfeld
  • Publication number: 20210134393
    Abstract: Systems and methods for analyzing first and second strings against a ground truth string are provided. A construct representing a plurality of components is obtained, each component for a different portion of the truth string. The construct comprises a plurality of measurement string sampling pools each having an identifier and a corresponding plurality of measurement samplings corresponding to one or two of the components. Each sampling has the identifier and a portion of the first or second string. Samplings are assigned to first, second or third classes when coding a portion of the first string, second string, or both the first and second string. First and second positions are tested for sequence events by calculating a plurality of sequence event models using assumptions on the components having samplings encompassing the first and second positions and class assignments. These assumptions are updated using the calculated models and the models are recalculated.
    Type: Application
    Filed: July 21, 2020
    Publication date: May 6, 2021
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks
  • Publication number: 20210123103
    Abstract: The present disclosure relates to methods, compositions and systems for haplotype phasing and copy number variation assays. Included within this disclosure are methods and systems for combining the barcode comprising beads with samples in multiple separate partitions, as well as methods of processing, sequencing and analyzing barcoded samples.
    Type: Application
    Filed: June 11, 2020
    Publication date: April 29, 2021
    Inventors: Michael Schnall-Levin, Mirna Jarosz, Christopher Hindson, Kevin Ness, Serge Saxonov, Benjamin Hindson, Xinying Zheng, Patrick Marks, John Stuelpnagel
  • Publication number: 20210047684
    Abstract: The present disclosure provides methods and systems for producing full-length sequencing information of transcriptomes from single cells or from the bulk. Random ligation and circularization of barcoded or non-barcoded complementary deoxyribonucleic molecules can be used to provide a circular template for amplification and subsequent sequencing.
    Type: Application
    Filed: August 26, 2020
    Publication date: February 18, 2021
    Inventors: Vijay Kumar Sreenivasa Gopalan, Paul Ryvkin, Zachary Bent, Jessica Michele Terry, David Jaffe, Patrick Marks, Tarjei Sigurd Mikkelsen
  • Patent number: 10854315
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 1, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Patent number: 10777301
    Abstract: The present invention is generally directed to a hierarchical genome assembly process for producing high-quality de novo genome assemblies. The method utilizes a single, long-insert, shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT®) DNA sequencing, and obviates the need for additional sample preparation and sequencing data sets required for previously described hybrid assembly strategies. Efficient de novo assembly from genomic DNA to a finished genome sequence is demonstrated for several microorganisms using as little as three SMRT® cells, and for bacterial artificial chromosomes (BACs) using sequencing data from just one SMRT® Cell. Part of this new assembly workflow is a new consensus algorithm which takes advantage of SMRT® sequencing primary quality values, to produce a highly accurate de novo genome sequence, exceeding 99.999% (QV 50) accuracy.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: September 15, 2020
    Assignee: Pacific Biosciences for California, Inc.
    Inventors: Chen-Shan Chin, Patrick Marks, David Alexander, Aaron Klammer, Stephen W Turner
  • Patent number: 10748643
    Abstract: Systems and methods for analyzing first and second strings against a ground truth string are provided. A construct representing a plurality of components is obtained, each component for a different portion of the truth string. The construct comprises a plurality of measurement string sampling pools each having an identifier and a corresponding plurality of measurement samplings corresponding to one or two of the components. Each sampling has the identifier and a portion of the first or second string. Samplings are assigned to first, second or third classes when coding a portion of the first string, second string, or both the first and second string. First and second positions are tested for sequence events by calculating a plurality of sequence event models using assumptions on the components having samplings encompassing the first and second positions and class assignments. These assumptions are updated using the calculated models and the models are recalculated.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 18, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks
  • Publication number: 20190332963
    Abstract: A visualization system comprising a persistent memory, storing a dataset, and a non-persistent memory implements a pattern visualizing method. The dataset contains discrete attribute values for each first entity of a first type in a plurality of first entities of the first type and discrete attribute values for each first entity of a second type in a plurality of first entities of the second type for each second entity in a plurality of second entities. The dataset is compressed by blocked compression and represents discrete attribute values in both compressed sparse row and column formats. The discrete attribute values are clustered to assign each second entity to a cluster in a plurality of clusters.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 31, 2019
    Inventors: Alexander Y. Wong, Jeffrey Mellen, Kevin J. Wu, Paul Ryvkin, Preyas Shah, Patrick Marks, Niranjan Srinivas