Patents by Inventor Paul Kimelman

Paul Kimelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190369148
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, a noise measurement circuit configured to measure electrical noise on the node, and the controller receiving the measurement of noise from the noise measurement circuit.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Patent number: 10466286
    Abstract: A system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, and the controller causing the time period for capacitance measurements to vary even when the capacitance is constant.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Patent number: 10422822
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, a noise measurement circuit configured to measure electrical noise on the node, and the controller receiving the measurement of noise from the noise measurement circuit.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 24, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Publication number: 20190131960
    Abstract: A delay circuit, including a connector pad to receive a data input, a pad pin to receive a clock input having a clock edge, a first data line to receive the data input, a second data line to receive the data input, the second data line including a delay circuit that outputs a delayed data output, and at least one logic gate to accept the data input and delayed data output and output a logic state, wherein the logic state determines whether there is a glitch in the delayed data output, and wherein the delay circuit includes at least one delay element to register an output of the at least one logic gate at the clock edge to recognize the glitch.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 2, 2019
    Inventor: Paul KIMELMAN
  • Patent number: 10277213
    Abstract: A delay circuit, including a connector pad to receive a data input, a pad pin to receive a clock input having a clock edge, a first data line to receive the data input, a second data line to receive the data input, the second data line including a delay circuit that outputs a delayed data output, and at least one logic gate to accept the data input and delayed data output and output a logic state, wherein the logic state determines whether there is a glitch in the delayed data output, and wherein the delay circuit includes at least one delay element to register an output of the at least one logic gate at the clock edge to recognize the glitch.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: April 30, 2019
    Assignee: NXP USA, Inc.
    Inventor: Paul Kimelman
  • Publication number: 20180335459
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, a noise measurement circuit configured to measure electrical noise on the node, and the controller receiving the measurement of noise from the noise measurement circuit.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Patent number: 10060959
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, a noise measurement circuit configured to measure electrical noise on the node, and the controller receiving the measurement of noise from the noise measurement circuit.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 28, 2018
    Assignee: Texas Instruments Incorporated
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Publication number: 20180106844
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, and the controller causing the time period for capacitance measurements to vary even when the capacitance is constant.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 19, 2018
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Patent number: 9846185
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, and the controller causing the time period for capacitance measurements to vary even when the capacitance is constant.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 19, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Patent number: 9521614
    Abstract: A method for automation and control of a wireless device in a WiFi environment. The method includes a wireless mobile device configured with a soft access point (softAP) transmitting probe requests to home automation devices and traditional stationary access points. The wireless mobile device periodically wakes up to scan for other services, sends a probe request, authenticates the received probe response from the another device and receives control information via the received probe response.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: December 13, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Leonardo W. Estevez, Paul Kimelman, Avraham Baum
  • Patent number: 9335223
    Abstract: Methods and circuits for measuring the temperature of a transistor are disclosed. An embodiment of the method includes, providing a current into a circuit, wherein the circuit is connected to the transistor. A variable resistance is connected between the base and collector of the transistor. The circuit has a first mode and a second mode, wherein the current in the first mode flows into the base of the transistor and through the resistance and the current in the second mode flows into the emitter of the transistor. Voltages in both the first mode and the second mode are measured using different resistance settings. The temperature of the transistor is calculated based on the difference between the different voltages.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: May 10, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mikel K. Ash, Krishnaswamy Nagaraj, Paul Kimelman, Steve Vu
  • Publication number: 20150085725
    Abstract: A method for automation and control of a wireless device in a WiFi environment. The method includes a wireless mobile device configured with a soft access point (softAP) transmitting probe requests to home automation devices and traditional stationary access points. The wireless mobile device periodically wakes up to scan for other services, sends a probe request, authenticates the received probe response from the another device and receives control information via the received probe response.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 26, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Leonardo W. Estevez, Paul Kimelman, Avraham Baum
  • Publication number: 20140314124
    Abstract: Methods and circuits for measuring the temperature of a transistor are disclosed. An embodiment of the method includes, providing a current into a circuit, wherein the circuit is connected to the transistor. A variable resistance is connected between the base and collector of the transistor. The circuit has a first mode and a second mode, wherein the current in the first mode flows into the base of the transistor and through the resistance and the current in the second mode flows into the emitter of the transistor. Voltages in both the first mode and the second mode are measured using different resistance settings. The temperature of the transistor is calculated based on the difference between the different voltages.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Mikel K. Ash, Krishnaswamy Nagaraj, Paul Kimelman, Steve Vu
  • Patent number: 8843769
    Abstract: A secure environment is established within a system on a chip (SoC) without the use of a memory management unit. A set of security parameters is produced by a configuration program executed by a processor within the SoC that is read from a first non-volatile memory within the SoC. A set of stored parameters is created in a committable non-volatile memory within the SoC by writing the set of security parameters into the committable non-volatile memory. The committable non-volatile memory is sealed so that that it cannot be read or written by the processor after being sealed. The stored parameters can then be accessed only by control circuitry. Security circuitry within the SoC is configured using the stored parameters each time the SoC is initialized and thereby enforces the secure environment within the SoC.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 23, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Paul Kimelman
  • Patent number: 8826433
    Abstract: A system comprises an enclosure, host logic contained in the enclosure, and intrusion security logic also contained in the enclosure. The intrusion security logic is coupled to the host logic and configured to detect a security intrusion to the system and to respond to a security intrusion with a user-configurable trigger event. The intrusion security logic implements at least two tamper blocks, each tamper block configured to monitor one more input signals and initiate a trigger event when a security breach of the enclosure is detected. At least one of the tamper blocks comprises a state machine whose operation is controlled by way of user-programmable registers.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 2, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Paul Kimelman
  • Publication number: 20140239983
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, and the controller causing the time period for capacitance measurements to vary even when the capacitance is constant.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Publication number: 20140239977
    Abstract: A capacitive sensing system includes a controller, a node connected to one side of a capacitance, the controller configured to measure the capacitance by measuring a time for a voltage across the capacitance to reach a predetermined reference voltage, a noise measurement circuit configured to measure electrical noise on the node, and the controller receiving the measurement of noise from the noise measurement circuit.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Krishnasawamy Nagaraj, Paul Kimelman, Abhijit Kumar Das
  • Patent number: 8607035
    Abstract: This invention relates to multi-core, multi-processing, factory multi-core and DSP multi-core. The nature of the invention is related to more optimal uses of a multi-core system to maximize utilization of the processor cores and minimize power use. The novel and inventive steps are focused on use of interrupts and prioritized interrupts, along with optional in-built methods, to allow systems to run more efficiently and with less effort on the part of the programmer.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Paul Kimelman
  • Patent number: 8572329
    Abstract: A data processing system is provided with a programmable memory protection unit 10 defining a plurality of programmable memory regions 2, 4, 6, 8 each with associated programmable memory attributes. A default memory protection unit 22 is provided and defines a plurality of default memory regions a, b, c, d, e each with associated default memory attributes. If a miss occurs in the programmable memory protection unit 10, and the memory access is a privileged level memory access, then the default memory protection unit 22 will return default memory attributes for that memory request.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: October 29, 2013
    Assignee: ARM Limited
    Inventors: Simon Axford, Simon John Craske, Paul Kimelman
  • Patent number: 8384332
    Abstract: An integrated gearbox/encoder and control system that includes: a gearbox with an output shaft connected to a mechanical load; a first sensor detecting the rotary position of the output shaft; a motor; a second sensor detecting the rotary position of the motor; and a system controller controlling motive drive to the motor. The two rotary position sensors permit direct determination of gearbox backlash which can be used in motor control. A drive current sensor similarly permits determination of a vibration signature for comparison with a standard.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 26, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Steven M. Meyer, Paul Kimelman